Geometric Design of Linkages


Book Description

This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems. This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory.




Kinematics and Linkage Design


Book Description




Kinematic Design of Machines and Mechanisms


Book Description

This text gives mechanical engineers and designers practical information and how-to methodologies for the application of the geometry of motion. It covers such devices as crank-slider, quick-return mechanisms, linkages, cams, and gear and gear trains.




Design of Special Planar Linkages


Book Description

Planar linkages play a very important role in mechanical engineering. As the simplest closed chain mechanisms, planar four-bar linkages are widely used in mechanical engineering, civil engineering and aerospace engineering. Design of Special Planar Linkages proposes a uniform design theory for planar four-bar linkages. The merit of the method proposed in this book is that it allows engineers to directly obtain accurate results when there are such solutions for the specified n precise positions; otherwise, the best approximate solutions will be found. This book discusses the kinematics and reachable workspace and singularity of a planar 3-RRR linkage, which can be used to analyze other planar linkages. Then a foldable stair that retains the walking conversions of human beings and all the merits of a concrete stair in civil engineering is described along with a lifting guidance mechanism that has the advantages of high strength, high rigidity, lightweight overconstraint trusses and motion flexibility. The method proposed in this book can be applied to other planar linkages. This book offers a valuable resource for scientists, researchers, engineers, graduate students in mechanical engineering especially those interested in engineering design, robotics and automation. Jingshan Zhao, Associate professor; Zhijing Feng and Fulei Chu, professor; Ning Ma, Dr., all work at the Department of Mechanical Engineering, Tsinghua University.




Kinematics and Linkage Design


Book Description




Introduction to Mechanism Design


Book Description

Introduction to Mechanism Design: with Computer Applications provides an updated approach to undergraduate Mechanism Design and Kinematics courses/modules for engineering students. The use of web-based simulations, solid modeling, and software such as MATLAB and Excel is employed to link the design process with the latest software tools for the design and analysis of mechanisms and machines. While a mechanical engineer might brainstorm with a pencil and sketch pad, the final result is developed and communicated through CAD and computational visualizations. This modern approach to mechanical design processes has not been fully integrated in most books, as it is in this new text.







Kinematics, Dynamics, and Design of Machinery


Book Description

Kinematics, Dynamics, and Design of Machinery, Third Edition, presents a fresh approach to kinematic design and analysis and is an ideal textbook for senior undergraduates and graduates in mechanical, automotive and production engineering Presents the traditional approach to the design and analysis of kinematic problems and shows how GCP can be used to solve the same problems more simply Provides a new and simpler approach to cam design Includes an increased number of exercise problems Accompanied by a website hosting a solutions manual, teaching slides and MATLAB® programs




Mechanism Design


Book Description

Traditionally, mechanisms are created by designer's intuition, ingenuity, and experience. However, such an ad hoc approach cannot ensure the identification of all possible design alternatives, nor does it necessarily lead to optimum design. Mechanism Design: Enumeration of Kinematic Structures According to Function introduces a methodology for systematic creation and classification of mechanisms. With a partly analytical and partly algorithmic approach, the author uses graph theory, combinatorial analysis, and computer algorithms to create kinematic structures of the same nature in a systematic and unbiased manner. He sketches mechanism structures, evaluating them with respect to the remaining functional requirements, and provides numerous atlases of mechanisms that can be used as a source of ideas for mechanism and machine design. He bases the book on the idea that some of the functional requirements of a desired mechanism can be transformed into structural characteristics that can be used for the enumeration of mechanisms. The most difficult problem most mechanical designers face at the conceptual design phase is the creation of design alternatives. Mechanism Design: Enumeration of Kinematic Structures According to Function presents you with a methodology that is not available in any other resource.




Mechanism Design


Book Description

In the field of mechanism design, kinematic synthesis is a creative means to produce mechanism solutions. Combined with the emergence of powerful personal computers, mathematical analysis software and the development of quantitative methods for kinematic synthesis, there is an endless variety of possible mechanism solutions that users are free to e