Kinetic Processes in Gases and Molecular Lasers


Book Description

This book provides a complete systematic analysis of the processes of relaxation kinetics and the study of physical models of gas lasers. It begins by introducing the reader to the basic theory and fundamental problems in relaxation processes in gasses, and goes on to examine the new trend of physico-chemical kinetics in the field of laser emission. Finally, it presents the operating principles and physical models of all fundamental types of gas lasers.




Plasma Kinetics in Atmospheric Gases


Book Description

Emphasis is placed on the analysis of translational, rotational, vibrational and electronically excited state kinetics, coupled to the electron Boltzmann equation.




Handbook of Molecular Lasers


Book Description

Optical science, engineering, and technology have grown rapidly in the last decade so that today optical engineering has emerged as an important discipline in its own right. This series is devoted to discussing topics in optical engineering at a level that will be useful to those working in the field or attempting to design systems that are based on optical techniques or that have significant optical subsystems.




Chemical Kinetics


Book Description

Chemical Kinetics relates to the rates of chemical reactions and factors such as concentration and temperature, which affects the rates of chemical reactions. Such studies are important in providing essential evidence as to the mechanisms of chemical processes. The book is designed to help the reader, particularly students and researchers of physical science, understand the chemical kinetics mechanics and chemical reactions. The selection of topics addressed and the examples, tables and graphs used to illustrate them are governed, to a large extent, by the fact that this book is aimed primarily at physical science (mainly chemistry) technologists. Undoubtedly, this book contains "must read" materials for students, engineers, and researchers working in the chemistry and chemical kinetics area. This book provides valuable insight into the mechanisms and chemical reactions. It is written in concise, self-explanatory and informative manner by a world class scientists in the field.




Non-Equilibrium Reacting Gas Flows


Book Description

In the present monograph, we develop the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures and discuss its applications to strongly non-equilibrium conditions. The main attention is focused on the influence of non-equilibrium kinetics on gas dynamics and transport properties. Closed systems of fluid dynamic equations are derived from the kinetic equations in different approaches. We consider the most accurate approach taking into account the state-to-state kinetics in a flow, as well as simplified multi-temperature and one-temperature models based on quasi-stationary distributions. Within these approaches, we propose the algorithms for the calculation of the transport coefficients and rate coefficients of chemical reactions and energy exchanges in non-equilibrium flows; the developed techniques are based on the fundamental kinetic theory principles. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles. The comparison of the results obtained within the frame of different approaches is presented, the advantages of the new state-to-state kinetic model are discussed, and the limits of validity for simplified models are established. The book can be interesting for scientists and graduate students working on physical gas dynamics, aerothermodynamics, heat and mass transfer, non-equilibrium physical-chemical kinetics, and kinetic theory of gases.




Plasma Physics and Engineering


Book Description

Plasma engineering is a rapidly expanding area of science and technology with increasing numbers of engineers using plasma processes over a wide range of applications. A current partial list would include: electronics, energetics, fuel conversion, ozone generation, treatment of polymers and othermaterials, synthesis of new materials, production of




Stability and Suppression of Turbulence in Relaxing Molecular Gas Flows


Book Description

This book presents an in-depth systematic investigation of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The work describes the theoretical foundations of a new way to control stability and laminar turbulent transitions in aerodynamic flows. It develops hydrodynamic models for describing thermal nonequilibrium gas flows which allow the consideration of suppression of inviscid acoustic waves in 2D shear flows. Then, nonlinear evolution of large-scale vortices and Kelvin-Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both linear and nonlinear classical energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of the book is to show the new dissipative effect, which can be used for flow control and laminarization. This volume will be of interest and useful to mechanical engineers, physicists, and mathematicians who specialize in hydrodynamic stability theory, turbulence, and laminarization of flows.




Lasers


Book Description

Developments in lasers continue to enable progress in many areas such as eye surgery, the recording industry and dozens of others. This book presents citations from the book literature for the last 25 years and groups them for ease of access which is also provided by subject, author and titles indexes.




Nonequilibrium Vibrational Kinetics


Book Description

This book is devoted to the systematic treatment of nonequi 1 ibrium vibrational kinetics in molecular systems. Particular emphasis is given to the vibrational excitation of diatomic molecules by low-energy electrons in a discharge and by IR photons in laser-pumped systems. The book follows the different steps of the introduction, redistribution, loss, and chemical conversion of the vibrational quanta, from the points of view of the overall kinetics and the dynamics of elementary processes. These two aspects are balanced in a multidisciplinary approach. The different chapters give the basic instruments (theoretical and experimental) which are needed to understand the ki netics of nonequilibrium systems. The book will introduce the reader to different areas such as plasmachemistry, laser chemistry, IR and Raman spectroscopy, and relaxation phenomena, emphasizing how the vibrational energy affects such research fields. The chapters dedicated to collisional dynamics involving vibrational excited molecules provide an introduc tion to the modern techniques uti 1 ized in the scattering theory of inelastic and reactive collisions. The extension of the vibrational kinetics to polyatomic mole cules, discussed in Chap. 10, is the natural bridge between coll ision and coll i sionless regimes. In conclusion, we hope that the approach followed in this book will stimulate the collaboration of researchers coming from different research fields, which are too often completely separate.




Laser-Induced Processes in Molecules


Book Description

This conference on both the physics and chemistry of laser-induced processes in molecules was organized by the Quantum Electronics Divisional Board of the European Physical Society whose membership is given on p.367. The confer ence aim, to mix physicists and chemists interested in this exciting field both from Europe and further afield, was well fulfilled by the attendance of around 250 participants and the submission of about 100 papers, which dre presented here. Numerous people at both the Physics Department, Heriot-Watt University, Edinburgh, and at the Projektgruppe fUr Laserforschung, MPI, Garching, con tributed hard work to the organization; in addition to Dr. Bob Harrison, who bore the biggest burden with conspicuous success, we particularly thank Hugh MacKenzie, Richard Dennis and last but not least Miss Joanne Askham and the secretaries in Edinburgh together with Frau Doris Maischberger and the secretaries in Garching. December 1978 K.L. Kompa S.D. Smith Conren~ Part I. Study of Lasers and Related Techniques Suitable for Applications in Chemistry and Spectroscopy Rare Gas Halogen Lasers and Photochemical Applications. By S.D. Rockwood ... 3 Group VI Molecular Photolytic Dissociation Studies Using Rare Gas Halide Lasers. By M.C. Gower, A.J. Kearsley, and C.E. Webb ... 8 Broadly Tunable UV Source Based on Stimulated Raman Scattering.