Knowledge Discovery from Sensor Data


Book Description

This book contains thoroughly refereed extended papers from the Second International Workshop on Knowledge Discovery from Sensor Data, Sensor-KDD 2008, held in Las Vegas, NV, USA, in August 2008. The 12 revised papers presented together with an invited paper were carefully reviewed and selected from numerous submissions. The papers feature important aspects of knowledge discovery from sensor data, e.g., data mining for diagnostic debugging; incremental histogram distribution for change detection; situation-aware adaptive visualization; WiFi mining; mobile sensor data mining; incremental anomaly detection; and spatiotemporal neighborhood discovery for sensor data.




Knowledge Discovery from Sensor Data


Book Description

This book contains thoroughly refereed extended papers from the Second International Workshop on Knowledge Discovery from Sensor Data, Sensor-KDD 2008, held in Las Vegas, NV, USA, in August 2008. The 12 revised papers presented together with an invited paper were carefully reviewed and selected from numerous submissions. The papers feature important aspects of knowledge discovery from sensor data, e.g., data mining for diagnostic debugging; incremental histogram distribution for change detection; situation-aware adaptive visualization; WiFi mining; mobile sensor data mining; incremental anomaly detection; and spatiotemporal neighborhood discovery for sensor data.




Managing and Mining Sensor Data


Book Description

Advances in hardware technology have lead to an ability to collect data with the use of a variety of sensor technologies. In particular sensor notes have become cheaper and more efficient, and have even been integrated into day-to-day devices of use, such as mobile phones. This has lead to a much larger scale of applicability and mining of sensor data sets. The human-centric aspect of sensor data has created tremendous opportunities in integrating social aspects of sensor data collection into the mining process. Managing and Mining Sensor Data is a contributed volume by prominent leaders in this field, targeting advanced-level students in computer science as a secondary text book or reference. Practitioners and researchers working in this field will also find this book useful.




Data Mining and Knowledge Discovery for Process Monitoring and Control


Book Description

Modern computer-based control systems are able to collect a large amount of information, display it to operators and store it in databases but the interpretation of the data and the subsequent decision making relies mainly on operators with little computer support. This book introduces developments in automatic analysis and interpretation of process-operational data both in real-time and over the operational history, and describes new concepts and methodologies for developing intelligent, state space-based systems for process monitoring, control and diagnosis. The book brings together new methods and algorithms from process monitoring and control, data mining and knowledge discovery, artificial intelligence, pattern recognition, and causal relationship discovery, as well as signal processing. It also provides a framework for integrating plant operators and supervisors into the design of process monitoring and control systems.




Knowledge Discovery from Data Streams


Book Description

Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents







Machine Learning Techniques for Improved Business Analytics


Book Description

Analytical tools and algorithms are essential in business data and information systems. Efficient economic and financial forecasting in machine learning techniques increases gains while reducing risks. Providing research on predictive models with high accuracy, stability, and ease of interpretation is important in improving data preparation, analysis, and implementation processes in business organizations. Machine Learning Techniques for Improved Business Analytics is a collection of innovative research on the methods and applications of artificial intelligence in strategic business decisions and management. Featuring coverage on a broad range of topics such as data mining, portfolio optimization, and social network analysis, this book is ideally designed for business managers and practitioners, upper-level business students, and researchers seeking current research on large-scale information control and evaluation technologies that exceed the functionality of conventional data processing techniques.




Urban Informatics


Book Description

This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.




Learning from Data Streams


Book Description

Processing data streams has raised new research challenges over the last few years. This book provides the reader with a comprehensive overview of stream data processing, including famous prototype implementations like the Nile system and the TinyOS operating system. Applications in security, the natural sciences, and education are presented. The huge bibliography offers an excellent starting point for further reading and future research.




Ubiquitous Knowledge Discovery


Book Description

Knowledge discovery in ubiquitous environments is an emerging area of research at the intersection of the two major challenges of highly distributed and mobile systems and advanced knowledge discovery systems. It aims to provide a unifying framework for systematically investigating the mutual dependencies of otherwise quite unrelated technologies employed in building next-generation intelligent systems: machine learning, data mining, sensor networks, grids, peer-to-peer networks, data stream mining, activity recognition, Web 2.0, privacy, user modelling and others. This state-of-the-art survey is the outcome of a large number of workshops, summer schools, tutorials and dissemination events organized by KDubiq (Knowledge Discovery in Ubiquitous Environments), a networking project funded by the European Commission to bring together researchers and practitioners of this emerging community. It provides in its first part a conceptual foundation for the new field of ubiquitous knowledge discovery - highlighting challenges and problems, and proposing future directions in the area of 'smart', 'adaptive', and 'intelligent' learning. The second part of this volume contains selected approaches to ubiquitous knowledge discovery and treats specific aspects in detail. The contributions have been carefully selected to provide illustrations and in-depth discussions for some of the major findings of Part I.