Lagrangian and Hamiltonian Methods for Nonlinear Control 2003


Book Description

This is the second of a series of IFAC Workshops initiated in 2000. The first one chaired and organized by Profs. N. Leonard and R. Ortega, was held in Princeton in March 2000. This proceedings volume looks at the role-played by Lagrangian and Hamiltonian methods in disciplines such as classical mechanics, quantum mechanics, fluid dynamics, electrodynamics, celestial mechanics and how such methods can be practically applied in the control community. *Presents and illustrates new approaches to nonlinear control that exploit the Lagrangian and Hamiltonian structure of the system to be controlled *Highlights the important role of Lagrangian and Hamiltonian Structures as design methods







Control of Interactive Robotic Interfaces


Book Description

This monograph deals with energy based control of interactive robotic interfaces. The port-Hamiltonian framework is exploited both for modeling and controlling interactive robotic interfaces. The book provides an energy oriented analysis and control synthesis of interactive robotic interfaces, from a single robot to multi-robot systems for interacting with real and virtual, possibly unstructured, environments.




Modeling and Control of Complex Physical Systems


Book Description

Energy exchange is a major foundation of the dynamics of physical systems, and, hence, in the study of complex multi-domain systems, methodologies that explicitly describe the topology of energy exchanges are instrumental in structuring the modeling and the computation of the system's dynamics and its control. This book is the outcome of the European Project "Geoplex" (FP5 IST-2001-34166) that studied and extended such system modeling and control methodologies. This unique book starts from the basic concept of port-based modeling, and extends it to port-Hamiltonian systems. This generic paradigm is applied to various physical domains, showing its power and unifying flexibility for real multi-domain systems.




Advances in Control Theory and Applications


Book Description

This volume is the outcome of the first CASY workshop on "Advances in Control Theory and Applications" which was held at University of Bologna on May 22-26, 2006. It consists of selected contributions by some of the invited speakers and contains recent results in control. The volume is intended for engineers, researchers, and students in control engineering.




Hybrid Systems: Computation and Control


Book Description

This book constitutes the refereed proceedings of the 7th International Workshop on Hybrid Systems: Computation and Control, HSCC 2004, held in Philadelphia, PA, USA, in March 2004. The 43 revised full papers presented together with an invited article were carefully reviewed and selected from 117 submissions. The papers address all current issues in hybrid systems such as tools for analysis and verification, control and optimization, modeling and engineering applications, and emerging topics in programming language support and implementation; a special focus is on the interplay between biomolecular networks, systems biology, formal methods, and control of hybrid systems.




Current Trends in Nonlinear Systems and Control


Book Description

This volume is an outgrowth of the workshop "Applications of Advanced Control Theory to Robotics and Automation, "organized in honor of the 70th birthdays of Petar V. Kokotovic and Salvatore (Turi) Nicosia. Both Petar and Turi have carried out distinguished work in the control community and have long been recognized as mentors, as well as experts and pioneers in the field of automatic control, covering many topics in control theory and several different applications. The variety of their research is reflected in this book, which includes contributions ranging from mathematics to laboratory experiments. The scope of the work is very broad, and although each chapter is self-contained, the book has been organized into thematically related chapters, which in some cases, suggest to the reader a convenient reading sequence. The great variety of topics covered and the almost tutorial writing style used by many of the authors will make this book suitable for both experts in the control field and young researchers who seek a more intuitive understanding of these relevant topics in the field.







Perturbation Theory


Book Description

This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, is devoted to the fundamentals of Perturbation Theory (PT) as well as key applications areas such as Classical and Quantum Mechanics, Celestial Mechanics, and Molecular Dynamics. Less traditional fields of application, such as Biological Evolution, are also discussed. Leading scientists in each area of the field provide a comprehensive picture of the landscape and the state of the art, with the specific goal of combining mathematical rigor, explicit computational methods, and relevance to concrete applications. New to this edition are chapters on Water Waves, Rogue Waves, Multiple Scales methods, legged locomotion, Condensed Matter among others, while all other contributions have been revised and updated. Coverage includes the theory of (Poincare’-Birkhoff) Normal Forms, aspects of PT in specific mathematical settings (Hamiltonian, KAM theory, Nekhoroshev theory, and symmetric systems), technical problems arising in PT with solutions, convergence of series expansions, diagrammatic methods, parametric resonance, systems with nilpotent real part, PT for non-smooth systems, and on PT for PDEs [write out this acronym partial differential equations]. Another group of papers is focused specifically on applications to Celestial Mechanics, Quantum Mechanics and the related semiclassical PT, Quantum Bifurcations, Molecular Dynamics, the so-called choreographies in the N-body problem, as well as Evolutionary Theory. Overall, this unique volume serves to demonstrate the wide utility of PT, while creating a foundation for innovations from a new generation of graduate students and professionals in Physics, Mathematics, Mechanics, Engineering and the Biological Sciences.




Advanced Dynamics and Control of Structures and Machines


Book Description

This book, intended for people in engineering and fundamental sciences, presents an integrated mathematical methodology for advanced dynamics and control of structures and machines, ranging from the derivation of models up to the control synthesis problem. This point of view is particularly useful as the physical insight and the associated structural properties, related e.g. to the Lagrangian or Hamiltonian framework, can be advantageously utilized. To this end, up to date results in disciplines like continuum mechanics, analytical mechanics, thermodynamics and electrodynamics are presented exploiting the differential geometric properties, with the basic notions of this coordinate-free approach revisited in an own chapter. In order to illustrate the proposed methodologies, several industrial applications, e.g., the derivation of exact solutions for the deformation compensation by shaped actuation in elastic bodies, or the coordination of rigid and flexible joint robots, are discussed.