Lasers


Book Description

Developments in lasers continue to enable progress in many areas such as eye surgery, the recording industry and dozens of others. This book presents citations from the book literature for the last 25 years and groups them for ease of access which is also provided by subject, author and titles indexes.




Laser Diode Modulation and Noise


Book Description

Laser diodes represent a key element in the emerging field of opto electronics which includes, for example, optical communication, optical sensors or optical disc systems. For all these applications, information is either transmitted, stored or read out. The performance of these systems depends to a great deal on the performance of the laser diode with regard to its modulation and noise characteristics. Since the modulation and noise characteristics of laser diodes are of vital importance for optoelectronic systems, the need for a book arises that concentrates on this subject. This book thus closes the gap between books on the device physics of semiconductor lasers and books on system design. Complementary to the specific topics concerning modulation and noise, the first part of this book reviews the basic laser characteristics, so that even a reader without detailed knowledge of laser diodes may follow the text. In order to understand the book, the reader should have a basic knowledge of electronics, semiconductor physics and optical communica tions. The work is primarily written for the engineer or scientist working in the field of optoelectronics; however, since the book is self-contained and since it contains a lot of numerical examples, it may serve as a textbook for graduate students. In the field of laser diode modulation and noise a vast amount has been published during recent years. Even though the book contains more than 600 references, only a small part of the existing literature is included.







Precision Spectroscopy, Diode Lasers, and Optical Frequency Measur


Book Description

A selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Div. of the Nat. Inst. of Standards and Technology and consists of work published between 1987 and 1997. The 2 programs represented are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized in 5 categories: diode laser technology; tunable laser systems; laser spectroscopy; optical synthesis and extended wavelength coverage; and multi-photon interactions and optical coherence.




Advances in Precision Laser Spectroscopy


Book Description

Provides extensive and thoroughly exhaustive coverage of precision laser spectroscopy Presents chapters written by recognized experts in their individual fields Topics covered include cold atoms, cold molecules, methods and techniques for production of cold molecules, optical frequency standards based on trapped single ions, etc Applicable for researchers and graduate students of optical physics and precision laser spectroscopy




Principles of Lasers


Book Description

This book is motivated by the very favorable reception given to the previous editions as well as by the considerable range of new developments in the laser field since the publication of the third edition in 1989. These new developments include, among others, quantum-well and muitiple-quantum-welliasers, diode-pumped solid-state lasers, new concepts for both stable and unstable resonators, femtosecond lasers, ultra-high-brightness lasers, etc. This edition thus represents a radically revised version of the preceding edition, amounting essentially to a new book in its own right. However, the basic aim has remained the same, namely to provide a broad and unified description of laser behavior at the simplest level which is compatible with a correct physical understanding. The book is therefore intended as a textbook for a senior-level or first-year graduate course and/or as a reference book. The most relevant additions or changes to this edition can be summarized as follows: 1. A much-more detailed description of Amplified Spontaneous Emission has been given (Chapter 2) and a novel simplified treatment of this phenomenon, both for homogeneous and inhomogeneous lines, has been introduced (Appendix C). 2. A major fraction of a new chapter (Chapter 3) is dedicated to the interaction of radiation with semiconductor media, either in a bulk form or in a quantum-confined structure (quantum-well, quantum-wire and quantum dot). 3.