Laser Metrology in Fluid Mechanics


Book Description

In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes. The principles and characteristics of the different techniques available in laser metrology are described in detail in this book. Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption spectroscopy by tunable laser diodes, which are generally better suited for high velocity flows. The size determination of particles by optical means, a technique mainly applied in two-phase flows, is the subject of another chapter, along with a description of the principles of light scattering. For each technique the basic principles are given, as well as optical devices and data processing. A final chapter reminds the reader of the main safety precautions to be taken when using powerful lasers.




Fluid Mechanics Measurements


Book Description

This revised edition provides updated fluid mechanics measurement techniques as well as a comprehensive review of flow properties required for research, development, and application. Fluid-mechanics measurements in wind tunnel studies, aeroacoustics, and turbulent mixing layers, the theory of fluid mechanics, the application of the laws of fluid mechanics to measurement techniques, techniques of thermal anemometry, laser velocimetry, volume flow measurement techniques, and fluid mechanics measurement in non-Newtonian fluids, and various other techniques are discussed.




Fluid Mechanics Measurements


Book Description

This revised edition provides updated fluid mechanics measurement techniques as well as a comprehensive review of flow properties required for research, development, and application. Fluid-mechanics measurements in wind tunnel studies, aeroacoustics, and turbulent mixing layers, the theory of fluid mechanics, the application of the laws of fluid mechanics to measurement techniques, techniques of thermal anemometry, laser velocimetry, volume flow measurement techniques, and fluid mechanics measurement in non-Newtonian fluids, and various other techniques are discussed.




Laser Doppler and Phase Doppler Measurement Techniques


Book Description

Providing the first comprehensive treatment, this book covers all aspects of the laser Doppler and phase Doppler measurement techniques, including light scattering from small particles, fundamental optics, system design, signal and data processing, tracer particle generation, and applications in single and two-phase flows. The book is intended as both a reference book for more experienced users as well as an instructional book for students. It provides ample material as a basis for a lecture course on the subject and represents one of the most comprehensive treatments of the phase Doppler technique to date. The book will serve as a valuable reference book in any fluid mechanics laboratory where the laser Doppler or phase Doppler techniques are used. This work reflects the authors' long practical experience in the development of the techniques and equipment, as the many examples confirm.




Measurement in Fluid Mechanics


Book Description

Measurement in Fluid Mechanics is an introductory, general reference in experimental fluid mechanics, featuring classical and state-of-the-art methods for flow visualization, flow rate measurement, pressure, velocity, temperature, concentration and wall shear stress. Suitable as a textbook for graduate and advanced undergraduate courses, and for practising engineers and applied scientists.




Optical Metrology for Fluids, Combustion and Solids


Book Description

Optical Metrology for Fluids, Combustion and Solids is the first practical handbook that presents the assemblage of the techniques necessary to provide a basic understanding of optical measurement for fluids, combustion, and solids. The use of light as a measurement tool has grown over the past twenty years from a narrowly specialized activity to a mainstay of modern research today. Until recently, the knowledge that could be extracted from the light interaction of light with physical objects was limited to specialized activities. The invention of the laser, the computer and microelectronics has enabled a measurement revolution such that virtually every parameter of engineering interest can be measured using the minimally intrusive properties of light. The authors of this book's chapters are leaders in this revolution. They work on the front lines of research in government, industry, and universities, inventing yet more ways to harness the power of light for the generation of knowledge.







The Handbook of Fluid Dynamics


Book Description

Providing professionals in the field with a comprehensive guide and resource, this book balances three traditional areas of fluid mechanics - theoretical, computational, and experimental - and expounds on basic science and engineering techniques. Each chapter discusses the primary issues related to the topic in question, outlines expert approaches, and supplies references for further information.




Fluid Flow Measurement


Book Description

There is a tendency to make flow measurement a highly theoretical and technical subject but what most influences quality measurement is the practical application of meters, metering principles, and metering equipment and the use of quality equipment that can continue to function through the years with proper maintenance have the most influence in obtaining quality measurement. This guide provides a review of basic laws and principles, an overview of physical characteristics and behavior of gases and liquids, and a look at the dynamics of flow. The authors examine applications of specific meters, readout and related devices, and proving systems. Practical guidelines for the meter in use, condition of the fluid, details of the entire metering system, installation and operation, and the timing and quality of maintenance are also included. This book is dedicated to condensing and sharing the authors' extensive experience in solving flow measurement problems with design engineers, operating personnel (from top supervisors to the newest testers), academically-based engineers, engineers of the manufacturers of flow meter equipment, worldwide practitioners, theorists, and people just getting into the business. - The authors' many years of experience are brought to bear in a thorough review of fluid flow measurement methods and applications - Avoids theory and focuses on presentation of practical data for the novice and veteran engineer - Useful for a wide range of engineers and technicians (as well as students) in a wide range of industries and applications




Lecture Notes On Turbulence And Coherent Structures In Fluids, Plasmas And Nonlinear Media


Book Description

This book is based on the lectures delivered at the 19th Canberra International Physics Summer School held at the Australian National University in Canberra (Australia) in January 2006.The problem of turbulence and coherent structures is of key importance in many fields of science and engineering. It is an area which is vigorously researched across a diverse range of disciplines such as theoretical physics, oceanography, atmospheric science, magnetically confined plasma, nonlinear optics, etc. Modern studies in turbulence and coherent structures are based on a variety of theoretical concepts, numerical simulation techniques and experimental methods, which cannot be reviewed effectively by a single expert.The main goal of these lecture notes is to introduce state-of-the-art turbulence research in a variety of approaches (theoretical, numerical simulations and experiments) and applications (fluids, plasmas, geophysics, nonlinear optical media) by several experts. A smooth introduction is presented to readers who are not familiar with the field, while reviewing the most recent advances in the area. This collection of lectures will provide a useful review for both postgraduate students and researchers new to the advancements in this field, as well as specialists seeking to expand their knowledge across different areas of turbulence research.