Infrared Spectroscopy of Biomolecules


Book Description

Infrared Spectroscopy of Biomolecules Edited by Henry H. Mantsch and Dennis Chapman Dramatic new advances in the application of infrared spectroscopy to biomolecules and instrumentation are revolutionizing this branch of molecular spectroscopy. Infrared Spectroscopy of Biomolecules provides an up-to-date, detailed look at the different spectroscopic techniques now available and offers a framework for progression in the field, including the evolution of Fourier transform methods, the development of time-resolved techniques and difference spectroscopy, as well as new modulation methods. The book begins with a fundamental introduction to the theories behind both infrared spectroscopy and the Fourier transform method, which lays the groundwork for the instrumental and mathematical chapters that follow. Once the basics of the infrared methods are established, the proceeding chapters cover the application of infrared spectroscopy to proteins, lipids, enzymes, nucleic acids, carbohydrates, and biomembranes. Other chapters in this excellent reference include: Theoretical Analyses of the Amide I Infrared Bands of Globular Proteins Slow and Fast Infrared Kinetic Studies Fourier Transform Infrared Spectroscopy of Cell Surface Polysaccharides What Can Infrared Spectroscopy Tell Us About the Structure and Composition of Intact Bacterial Cells Biomedical Infrared Spectroscopy Editors Henry Mantsch and Dennis Chapman, leading experts in the field, conclude with an exciting look at much-anticipated future developments, including the use of caged compounds and studies of oxidation reduction systems within the IR spectrometer. A solid introduction to the basics with up-to-the-minute coverage of the latest developments in the field, Infrared Spectroscopy of Biomolecules is an indispensable reference tool for biochemists, biophysicists, and structural biologists alike.




Laser spectroscopy IX


Book Description

Laser Spectroscopy IX documents the proceedings of the Ninth International Conference on Laser Spectroscopy, held in Bretton Woods, New Hampshire, June 18-23, 1989. The scientific program consisted of oral and poster presentations. There were 52 invited talks organized into 14 topical sessions, some with panel discussions. About 60 additional invited contributions were presented in three evening poster sessions. Also included were 15 post deadline oral and poster presentations. These proceedings contain summaries of essentially all of these contributions. The contributions made by researchers at the conference are organized into 14 parts. Part I focuses on laser cooling. Part II presents studies on laser spectroscopy. Part III includes papers on cavity Q.E.D. Parts IV, V, and VI examine noise and coherence, quantum size effects, and surface spectroscopy, respectively. Part VII deals with laser light sources. Part VIII includes papers on trapped ion spectroscopy. Part IX covers ultrafast spectroscopy while Part X takes up fundamental measurements, including those of positronium, the Rydberg constant, and lead and thallium isotopes. Parts XI-XIV cover, respectively, molecular spectroscopy and dynamics, applications in radiation forces, highly excited states and dynamics, and laser spectroscopy for biomedicine.




Laser Spectroscopy


Book Description

The impact of lasers on spectroscopy can hardly be overestimated. Lasers re present intense light sources with spectral energy densities which may exceed those of i ncoheren t sources by severa 1 orders of magnitude. Furthermore be cause of their extremely small bandwidth, single-mode lasers allow a spectral resolution which far exceeds that of conventional spectrometers. Many experi ments which could not be done before the application of lasers because of lack of intensity or insufficient resol ution are readily performed wi th lasers. Now several thousands of laser lines are known which span the whole spec tral range from the vacuum-ultraviolet to the far-infrared region. Of parti cular interest are the continuously tunable lasers which may in many cases replace wavelength-selecting elements, such as spectrometers or interferome ters. In combination with optical frequency mixing, techniques such conti nuously tunable monochromatic coherent light sources are available at nearly any desired wavelength above 100 nm.







Spectroscopy of Biological Molecules: Modern Trends


Book Description

The 1997 European Conference on Spectroscopy of Biological Molecules (ECSBM) is the seventh in a biennial series of conferences devoted to the applications of molecular spectroscopy to biological molecules and related systems. The interest of these conferences rests mainly on the relationship between the structure and physiological activity of biological molecules and related systems of which these molecular species form part. This volume ofECSBM contains articles prepared by the invited lecturers and those making poster presentations at the seventh ECSBM. The reader will find mainly applications of vibrational spectroscopy to protein structure and dynamics, biomembranes, molecular recognition, nucleic acids and other biomolecules and biological systems containing specific chromophors. Biomedical applications of vibrational spectroscopy are expanding rapidly. On the other hand, a significant number of the papers describe applications of other methods, such as NMR, circular dichroism, optical absorption and fluorescence, X-ray absorption and diffraction and other theoretical methods. One aim has been to achieve a well balanced, critically comparative review of recent progress in the field of biomolecular structure, bonding and dynamics based on applications of the above spectroscopic methods. A great part of the contributions included in this volume are devoted to biomedical and biotechnological applications and provide a broadly based account of recent applicationS in this field. The content of this book has been organized in sections corresponding mainly to the different types of biological molecules investigated. This book includes also another section related to theoretical methods where MO calculations of vibrational frequencies dominate clearly the topic.




Gas-Phase IR Spectroscopy and Structure of Biological Molecules


Book Description

The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.




Frontiers of Laser Spectroscopy of Gases


Book Description

This volume contains the lectures presented at the NATO Advanced Study Institute on "Frontiers of Laser Spectroscopy of Gases" held in the Hotel Golf Mar, Vimeiro, near Torres Vedras, Portugal from 30 March to 10 April 1987. The objective of the meeting was to take stock of the recent technological developments involving lasers and to assess their impact on spectroscopy. The whole range of wavelengths from the far infrared through to the extreme ultraviolet was covered. In addition, specific applications to both atoms and molecules were described. Indeed, one of the most successful and pleasant aspects of the Institute was the joint participation of atomic physicists and molecular spectro scopists, who meet all too rarely these days. The Institute also succeeded in covering a wide time span from the very earliest days of lasers to some of the very latest developments in both lasers and their applications to spectroscopy. There were 14 invited lecturers, giving a total of 40 lectures, and 89 other participants at the Institute. Each of the invited lecturers has contributed a chapter to this volume. In addition, on Thursday 2nd April a special one-day session was held in the Chemistry Department at the University of Coimbra to mark the retirement of Professor Dr. F.




Molecular and Laser Spectroscopy


Book Description

Molecular and Laser Spectroscopy, Advances and Applications: Volume 2 gives students and researchers an up-to-date understanding of the fast-developing area of molecular and laser spectroscopy. This book covers basic principles and advances in several conventional as well as new and upcoming areas of molecular and laser spectroscopy, such as a wide range of applications in medical science, material science, standoff detection, defence and security, chemicals and pharmaceuticals, and environmental science. It covers the latest advancements, both in terms of techniques and applications, and highlights future projections. Editors V.P. Gupta and Yukihiro Ozaki have brought together eminent scientists in different areas of spectroscopy to develop specialized topics in conventional molecular spectroscopy (Cavity ringdown, Matrix Isolation, Intense THz, Far- and Deep- UV, Optogalvanic ), linear and nonlinear laser spectroscopy (Rayleigh & Raman Scattering), Ultrafast Time-resolved spectroscopy, and medical applications of molecular spectroscopy. and advanced material found in research articles. This new volume expands upon the topics covered in the first volume for scientists to learn the latest techniques and put them to practical use in their work. - Covers several areas of spectroscopy research and expands upon topics covered in the first volume - Includes exhaustive lists of research articles, reviews, and books at the end of each chapter to further learning objectives - Uses illustrative examples of the varied applications to provide a practical guide to those interested in using molecular and laser spectroscopy tools in their research




Frontiers of Molecular Spectroscopy


Book Description

Much of what we know about atoms, molecules, and the nature of matter has been obtained using spectroscopy over the last one hundred years or so. In this book we have collected together twenty chapters by eminent scientists from around the world to describe their work at the cutting edge of molecular spectroscopy. These chapters describe new methodology and applications, instrumental developments, and theory which is taking spectroscopy into new frontiers. The range of topics is broad. Lasers are utilized in much of the research, but their applications range from sub-femtosecond spectroscopy to the study of viruses and also to the investigation of art and archeological artifacts. Three chapters discuss work on biological systems and three others represent laser physics. The recent advances in cavity ringdown spectroscopy (CRDS), surface enhanced Raman spectroscopy (SERS), two-dimensional correlation spectroscopy (2D-COS), and microwave techniques are all covered. Chapters on electronic excited states, molecular dynamics, symmetry applications, and neutron scattering are also included and demonstrate the wide utility of spectroscopic techniques. - Provides comprehensive coverage of present spectroscopic investigations - Features 20 chapters written by leading researchers in the field - Covers the important role of molecular spectroscopy in research concerned with chemistry, physics, and biology