Guidelines for Initiating Events and Independent Protection Layers in Layer of Protection Analysis


Book Description

The book is a guide for Layers of Protection Analysis (LOPA)practitioners. It explains the onion skin modeland in particular, how it relates to the use of LOPA and the needfor non-safety instrumented independent protection layers. Itprovides specific guidance on Independent Protection Layers (IPLs)that are not Safety Instrumented Systems (SIS). Using theLOPA methodology, companies typically take credit for riskreductions accomplished through non-SIS alternatives; i.e.administrative procedures, equipment design, etc. Itaddresses issues such as how to ensure the effectiveness andmaintain reliability for administrative controls or“inherently safer, passive” concepts. This book will address how the fields of Human ReliabilityAnalysis, Fault Tree Analysis, Inherent Safety, Audits andAssessments, Maintenance, and Emergency Response relate to LOPA andSIS. The book will separate IPL’s into categories such as thefollowing: Inherent Safety eliminates a scenario or fundamentally reduces a hazard Preventive/Proactive prevents initiating event from occurring such as enhancedmaintenance Preventive/Active stops chain of events after initiating event occurs but beforean incident has occurred such as high level in a tank shutting offthe pump. Mitigation (active or passive) minimizes impact once an incident has occurred such as closingblock valves once LEL is detected in the dike (active) or the dikepreventing contamination of groundwater (passive).




Guidelines for Enabling Conditions and Conditional Modifiers in Layer of Protection Analysis


Book Description

The initial Layer of protection analysis (LOPA) book published in 2001 set the rules and approaches for using LOPA as an intermediate method between purely qualitative hazards evaluation/analysis and more quantitative analysis methods. Basic LOPA provides an order-of-magnitude risk estimate of risk with fairly reproducible results. LOPA results are considered critical in determining safety integrity level for design of safety instrumented systems. This guideline clarifies key concepts and reinforces the limitations and the requirements of LOPA. The main scope of the guideline is to provide examples of CMs and ECs and to provide concrete guidance on the protocols that must be followed to use these concepts. The book presents a brief overview of Layer of Protection Analysis (LOPA) and its variations, and summarizes terminology used for evaluating scenarios in the context of a typical incident sequence. It defines and illustrates the most common types of ECs and CMs and shows how they interrelate to risk criteria as well as their application to other methods.




Plant Hazard Analysis and Safety Instrumentation Systems


Book Description

Plant Hazard Analysis and Safety Instrumentation Systems is the first book to combine coverage of these two integral aspects of running a chemical processing plant. It helps engineers from various disciplines learn how various analysis techniques, international standards, and instrumentation and controls provide layers of protection for basic process control systems, and how, as a result, overall system reliability, availability, dependability, and maintainability can be increased. This step-by-step guide takes readers through the development of safety instrumented systems, also including discussions on cost impact, basics of statistics, and reliability. Swapan Basu brings more than 35 years of industrial experience to this book, using practical examples to demonstrate concepts. Basu links between the SIS requirements and process hazard analysis in order to complete SIS lifecycle implementation and covers safety analysis and realization in control systems, with up-to-date descriptions of modern concepts, such as SIL, SIS, and Fault Tolerance to name a few. In addition, the book addresses security issues that are particularly important for the programmable systems in modern plants, and discusses, at length, hazardous atmospheres and their impact on electrical enclosures and the use of IS circuits. - Helps the reader identify which hazard analysis method is the most appropriate (covers ALARP, HAZOP, FMEA, LOPA) - Provides tactics on how to implement standards, such as IEC 61508/61511 and ANSI/ISA 84 - Presents information on how to conduct safety analysis and realization in control systems and safety instrumentation




Safety Integrity Level Selection


Book Description

A textbook for training courses and seminars that demonstrate the application of quantitative risk analysis and tools to the problem of selecting safety integrity levels for safety instrumented systems. It does not explain quantitative risk analysis in general, only its application in the one small




Risk Assessment


Book Description

Covers the fundamentals of risk assessment and emphasizes taking a practical approach in the application of the techniques Written as a primer for students and employed safety professionals covering the fundamentals of risk assessment and emphasizing a practical approach in the application of the techniques Each chapter is developed as a stand-alone essay, making it easier to cover a subject Includes interactive exercises, links, videos, and downloadable risk assessment tools Addresses criteria prescribed by the Accreditation Board for Engineering and Technology (ABET) for safety programs




A Guide to Hazard Identification Methods


Book Description

A Guide to Hazard Identification Methods, Second Edition provides a description and examples of the most common techniques leading to a safer and more reliable chemical process industry. This new edition revises previous sections with up-to-date, linked sources. Furthermore, new elements include a more detailed account of purpose, Black Swan events, human factors, auditing and QA, more examples and a discussion of major incidents, HAZID and task analysis.




Guidelines for Chemical Process Quantitative Risk Analysis


Book Description

Chemical process quantitative risk analysis (CPQRA) as applied to the CPI was first fully described in the first edition of this CCPS Guidelines book. This second edition is packed with information reflecting advances in this evolving methodology, and includes worked examples on a CD-ROM. CPQRA is used to identify incident scenarios and evaluate their risk by defining the probability of failure, the various consequences and the potential impact of those consequences. It is an invaluable methodology to evaluate these when qualitative analysis cannot provide adequate understanding and when more information is needed for risk management. This technique provides a means to evaluate acute hazards and alternative risk reduction strategies, and identify areas for cost-effective risk reduction. There are no simple answers when complex issues are concerned, but CPQRA2 offers a cogent, well-illustrated guide to applying these risk-analysis techniques, particularly to risk control studies. Special Details: Includes CD-ROM with example problems worked using Excel and Quattro Pro. For use with Windows 95, 98, and NT.




Bow Ties in Risk Management


Book Description

AN AUTHORITATIVE GUIDE THAT EXPLAINS THE EFFECTIVENESS AND IMPLEMENTATION OF BOW TIE ANALYSIS, A QUALITATIVE RISK ASSESSMENT AND BARRIER MANAGEMENT METHODOLOGY From a collaborative effort of the Center for Chemical Process Safety (CCPS) and the Energy Institute (EI) comes an invaluable book that puts the focus on a specific qualitative risk management methodology – bow tie barrier analysis. The book contains practical advice for conducting an effective bow tie analysis and offers guidance for creating bow tie diagrams for process safety and risk management. Bow Ties in Risk Management clearly shows how bow tie analysis and diagrams fit into an overall process safety and risk management framework. Implementing the methods outlined in this book will improve the quality of bow tie analysis and bow tie diagrams across an organization and the industry. This important guide: Explains the proven concept of bow tie barrier analysis for the preventing and mitigation of incident pathways, especially related to major accidents Shows how to avoid common pitfalls and is filled with real-world examples Explains the practical application of the bow tie method throughout an organization Reveals how to treat human and organizational factors in a sound and practical manner Includes additional material available online Although this book is written primarily for anyone involved with or responsible for managing process safety risks, this book is applicable to anyone using bow tie risk management practices in other safety and environmental or Enterprise Risk Management applications. It is designed for a wide audience, from beginners with little to no background in barrier management, to experienced professionals who may already be familiar with bow ties, their elements, the methodology, and their relation to risk management. The missions of both the CCPS and EI include developing and disseminating knowledge, skills, and good practices to protect people, property and the environment by bringing the best knowledge and practices to industry, academia, governments and the public around the world through collective wisdom, tools, training and expertise. The CCPS has been at the forefront of documenting and sharing important process safety risk assessment methodologies for more than 30 years. The EI's Technical Work Program addresses the depth and breadth of the energy sector, from fuels and fuels distribution to health and safety, sustainability and the environment. The EI program provides cost-effective, value-adding knowledge on key current and future international issues affecting those in the energy sector.




Guidelines for Risk Based Process Safety


Book Description

Guidelines for Risk Based Process Safety provides guidelines for industries that manufacture, consume, or handle chemicals, by focusing on new ways to design, correct, or improve process safety management practices. This new framework for thinking about process safety builds upon the original process safety management ideas published in the early 1990s, integrates industry lessons learned over the intervening years, utilizes applicable "total quality" principles (i.e., plan, do, check, act), and organizes it in a way that will be useful to all organizations - even those with relatively lower hazard activities - throughout the life-cycle of a company.




Layer of Protection Analysis


Book Description

Layer of protection analysis (LOPA) is a recently developed, simplified method of risk assessment that provides the much-needed middle ground between a qualitative process hazard analysis and a traditional, expensive quantitative risk analysis. Beginning with an identified accident scenario, LOPA uses simplifying rules to evaluate initiating event frequency, independent layers of protection, and consequences to provide an order-of-magnitude estimate of risk. LOPA has also proven an excellent approach for determining the safety integrity level necessary for an instrumented safety system, an approach endorsed in instrument standards, such as ISA S84 and IEC 61511. Written by industry experts in LOPA, this pioneering book provides all the necessary information to undertake and complete a Layer of Protection Analysis during any stage in a processes' life cycle. Loaded with tables, charts, and examples, this book is invaluable to technical experts involved with ensuring the safety of a process. Because of its simplified, quicker risk assessment approach, LOPA is destined to become a widely used technique. Join other major companies and start your LOPA efforts now by purchasing this book.