Learning and Cost Reductions for Generating Technologies in the National Energy Modeling System (NEMS).


Book Description

This report describes how Learning-by-Doing (LBD) is implemented endogenously in the National Energy Modeling System (NEMS) for generating plants. LBD is experiential learning that correlates to a generating technology's capacity growth. The annual amount of Learning-by-Doing affects the annual overnight cost reduction. Currently, there is no straightforward way to integrate and make sense of all the diffuse information related to the endogenous learning calculation in NEMS. This paper organizes the relevant information from the NEMS documentation, source code, input files, and output files, in order to make the model's logic more accessible. The end results are shown in three ways: in a simple spreadsheet containing all the parameters related to endogenous learning; by an algorithm that traces how the parameters lead to cost reductions; and by examples showing how AEO 2004 forecasts the reduction of overnight costs for generating technologies over time.




The Power of Change


Book Description

Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.




The National Energy Modeling System


Book Description

This book addresses the process and actions for developing enhanced capabilities to analyze energy policy issues and perform strategic planning activities at the U.S. Department of Energy (DOE) on an ongoing basis. Within the broader context of useful analytical and modeling capabilities within and outside the DOE, this volume examines the requirements that a National Energy Modeling System (NEMS) should fulfill, presents an overall architecture for a NEMS, identifies data needs, and outlines priority actions for timely implementation of the system.




Model Documentation: Renewable Fuels Module of the National Energy Modeling System


Book Description

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.




Monthly Energy Review


Book Description




Technological Learning in the Transition to a Low-Carbon Energy System


Book Description

Technological Learning in the Transition to a Low-Carbon Energy System: Conceptual Issues, Empirical Findings, and Use in Energy Modeling quantifies key trends and drivers of energy technologies deployed in the energy transition. It uses the experience curve tool to show how future cost reductions and cumulative deployment of these technologies may shape the future mix of the electricity, heat and transport sectors. The book explores experience curves in detail, including possible pitfalls, and demonstrates how to quantify the 'quality' of experience curves. It discusses how this tool is implemented in models and addresses methodological challenges and solutions. For each technology, current market trends, past cost reductions and underlying drivers, available experience curves, and future prospects are considered. Electricity, heat and transport sector models are explored in-depth to show how the future deployment of these technologies--and their associated costs--determine whether ambitious decarbonization climate targets can be reached - and at what costs. The book also addresses lessons and recommendations for policymakers, industry and academics, including key technologies requiring further policy support, and what scientific knowledge gaps remain for future research. Provides a comprehensive overview of trends and drivers for major energy technologies expected to play a role in the energy transition Delivers data on cost trends, helping readers gain insights on how competitive energy technologies may become, and why Reviews the use of learning curves in environmental impacts for lifecycle assessments and energy modeling Features social learning for cost modeling and technology diffusion, including where consumer preferences play a major role




Annual Energy Outlook 2016 With Projections to 2040


Book Description

The Annual Energy Outlook 2016 presents long-term projections of energy supply, demand, and prices through 2040. The projections, focused on U.S. energy markets, are based on results from EIA's National Energy Modeling System which enables EIA to make projections under alternative, internally consistent sets of assumptions.




A Nonlinear Complementarity Approach for the National Energy Modeling System


Book Description

The National Energy Modeling System (NEMS) is a large-scale mathematical model that computes equilibrium fuel prices and quantities in the U.S. energy sector. At present, to generate these equilibrium values, NEMS sequentially solves a collection of linear programs and nonlinear equations. The NEMS solution procedure then incorporates the solutions of these linear programs and nonlinear equations in a nonlinear Gauss-Seidel approach. The authors describe how the current version of NEMS can be formulated as a particular nonlinear complementarity problem (NCP), thereby possibly avoiding current convergence problems. In addition, they show that the NCP format is equally valid for a more general form of NEMS. They also describe several promising approaches for solving the NCP form of NEMS based on recent Newton type methods for general NCPs. These approaches share the feature of needing to solve their direction-finding subproblems only approximately. Hence, they can effectively exploit the sparsity inherent in the NEMS NCP.




The Nation's Energy Future


Book Description




Energy Budgets at Risk (EBaR)


Book Description

Energy Budgets at Risk (EBar)® provides everyone from facility energy managers and financial managers to government policy-makers and electric utilities program planners with the background information required to understand energy cost, price, efficiency, and related issues important in developing a balanced approach to facility energy risk management. Throughout the book, respected energy economist Dr. Jerry Jackson clearly shows how to reduce energy costs and increase cash flows by using risk management concepts developed in the financial industry.