Lecture Notes on Field Theory in Condensed Matter Physics


Book Description

The aim of this book is to introduce a graduate student to selected concepts in condensed matter physics for which the language of field theory is ideally suited. The examples considered in this book are those of superfluidity for weakly interacting bosons, collinear magnetism, and superconductivity. Quantum phase transitions are also treated in the context of quantum dissipative junctions and interacting fermions constrained to one-dimensional position space. The style of presentation is sufficiently detailed and comprehensive that it only presumes familiarity with undergraduate physics.




Condensed Matter Field Theory


Book Description

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.




Field Theory, Topology and Condensed Matter Physics


Book Description

This topical volume contains five pedagogically written articles on the interplay between field theory and condensed matter physics. The main emphasis is on the topological aspects, and especially quantum Hall fluids, and superconductivity is treated extensively. Other topics are conformal invariance and path integrals. The articles are carefully edited so that the book could ideally serve as a text for special graduate courses.




Field Theories of Condensed Matter Physics


Book Description

Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.




Statistical Approach to Quantum Field Theory


Book Description

This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory.




Field Theory


Book Description

Traditionally, field theory is taught through canonical quantization with a heavy emphasis on high energy physics. However, the techniques of field theory are applicable as well and are extensively used in various other areas of physics such as consdensed matter, nuclear physics and statistical mechanics. The path integral approach brings out this feature most clearly. In this book, the path integral approach is developed in detail completely within the context of quantum mechanics. Subsequently, it is applied to various areas of physics.







Many-Body Quantum Theory in Condensed Matter Physics


Book Description

The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.







Quantum Field Theory and Condensed Matter


Book Description

Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm–Pines and Chern–Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.