Lectures on Mathematical Theory of Extremum Problems


Book Description

The author of this book, Igor' Vladimirovich Girsanov, was one of the first mathematicians to study general extremum problems and to realize the feasibility and desirability of a unified theory of extremal problems, based on a functional analytic approach. He actively advocated this view, and his special course, given at the Faculty of Mechanics and Mathematics of the Moscow State University in 1963 and 1964, was apparently the first systematic exposition of a unified approach to the theory of extremal problems. This approach was based on the ideas of Dubovitskii and Milyutin [1]. The general theory of extremal problems has developed so intensely during the past few years that its basic concepts may now be considered finalized. Nevertheless, as yet the basic results of this new field of mathematics have not been presented in a form accessible to a wide range of readers. (The profound paper of Dubovitskii and Milyutin [2] can hardly be recommended for a first study of the theory, since, in particular, it does not contain proofs of the fundamental theorems. ) Girsanov's book fills this gap. It contains a systematic exposition of the general principles underlying the derivation of necessary and sufficient conditions for an extremum, in a wide variety of problems. Numerous applications are given to specific extremal problems. The main material is preceded by an introductory section in which all prerequisites from functional analysis are presented.




Lectures on Mathematical Theory of Extremum Problems


Book Description

The author of this book, Igor' Vladimirovich Girsanov, was one of the first mathematicians to study general extremum problems and to realize the feasibility and desirability of a unified theory of extremal problems, based on a functional analytic approach. He actively advocated this view, and his special course, given at the Faculty of Mechanics and Mathematics of the Moscow State University in 1963 and 1964, was apparently the first systematic exposition of a unified approach to the theory of extremal problems. This approach was based on the ideas of Dubovitskii and Milyutin [1]. The general theory of extremal problems has developed so intensely during the past few years that its basic concepts may now be considered finalized. Nevertheless, as yet the basic results of this new field of mathematics have not been presented in a form accessible to a wide range of readers. (The profound paper of Dubovitskii and Milyutin [2] can hardly be recommended for a first study of the theory, since, in particular, it does not contain proofs of the fundamental theorems. ) Girsanov's book fills this gap. It contains a systematic exposition of the general principles underlying the derivation of necessary and sufficient conditions for an extremum, in a wide variety of problems. Numerous applications are given to specific extremal problems. The main material is preceded by an introductory section in which all prerequisites from functional analysis are presented.







The Resource Sector in an Open Economy


Book Description

the economics of exhaustible " assets presents a whole forest of intriguing problems." 1 Harald Hotelling ) The two energy price shocks in 1973/74 and 1979/80 have arosed interest in the new area of resource economics. The affluent societies of Europe, North America and Japan were confronted with the new scarcity paradigm of the "space ship earth" with only a limited supply of natural resources aboard whereas population is growing and the environment can not accomodate the increasing volume of pollutants. The problem of natural resource scarcity gives rise to the question how resource-dependent economies like European coun tries and Japan are affected by an increase in resource prices and how they can adjust to rising energy prices. The new para digm also has focused new interest on the problem of the re source-extracting firm and of the resource-exporting country. The Hotelling revival of resource economics has given new im portance to the behavior and to the policy issues of resource exporting countries.




Invariance Principles and the Structure of Technology


Book Description

The theory of Lie groups has proven to be a most powerful analytical tool in many areas of modern scientific endeavors. It was only a few years ago that economists discovered the usefulness of this approach in their study of the frontiers of modern economic theory. These frontiers include the areas of technical change and productivity, technology and preference, economic conservation laws, comparative statics and integrability conditions, index number problems, and the general theory of ~ observable market behavior (Sato [1980, 1981], Nono [1971], Sato and N~no [1983], Russell [1983]). 1 In Nono [1971] and Sa to [1981, Chapter 4] the concept of "G-neutral" (group neutral) technical change was first introduced as a natural extension of the well-known concepts of Hicks, Harrod, Solow and Sato-Beckmann-Rose neutrality. The present monograph contains a further extension of the G-neutral technical change to the case of non-constant-returns-to-scale technology and to the case of multiple factor inputs. The methodology of total productivity estimation by means of Lie group transformations is also developed in this monograph. We would like to express our sincere thanks to many individuals notably to Professor M. J. Beckmann, Professor F. Mimura, Professor G. Suzawa, T. Mitchell, K. Mino and P. Calem, for their numerous contributions at various stages of this work. We are also grateful to Marion Wathey for her usual superb typing of this difficult manuscript. Providence, R. I. , U. S. A.




Foundations of Optimization


Book Description

This book covers the fundamental principles of optimization in finite dimensions. It develops the necessary material in multivariable calculus both with coordinates and coordinate-free, so recent developments such as semidefinite programming can be dealt with.




Semi-Infinite Programming and Applications


Book Description

Semi-infinite programming is a natural extension of linear pro gramming that allows finitely many variables to appear in infinitely many constraints. As the papers in this collection will reconfirm, the theoretical and practical manifestations and applications of this prob lem formulation are abundant and significant. This volume presents 20 carefully selected papers that were pre sented at the International Symposium on Semi-Infinite Programming and Applications, The University of Texas at Austin, September 8-10, 1981. A total of 70 papers were presented by distinguished participants from 15 countries. This was only the second international meeting on this topic, the first taking place in Bad Honnef,Federal Republic of Germany in 1978. A proceedings of that conference was organized and edited by Rainer Hettich of the University of Trier and published by Springer Verlag in 1979. The papers in this volume could have been published in any of several refereed journals. It is also probable that the authors of these papers would normally not have met at the same professional society meeting. Having these papers appear under one cover is thus something of a new phenomenon and provides an indication of both the unification and cross-fertilization opportunities that have emerged in this field. These papers were solicited only through the collective efforts of an International Program Committee organized according to the fol lowing research areas.




Econometric Decision Models


Book Description




Optimality Conditions in Vector Optimization


Book Description

Vector optimization is continuously needed in several science fields, particularly in economy, business, engineering, physics and mathematics. The evolution of these fields depends, in part, on the improvements in vector optimization in mathematical programming. The aim of this Ebook is to present the latest developments in vector optimization. The contributions have been written by some of the most eminent researchers in this field of mathematical programming. The Ebook is considered essential for researchers and students in this field.




Optimal Control


Book Description

February 27 - March 1, 1997, the conference Optimal Control: The ory, Algorithms, and Applications took place at the University of Florida, hosted by the Center for Applied Optimization. The conference brought together researchers from universities, industry, and government laborato ries in the United States, Germany, Italy, France, Canada, and Sweden. There were forty-five invited talks, including seven talks by students. The conference was sponsored by the National Science Foundation and endorsed by the SIAM Activity Group on Control and Systems Theory, the Mathe matical Programming Society, the International Federation for Information Processing (IFIP), and the International Association for Mathematics and Computers in Simulation (IMACS). Since its inception in the 1940s and 1950s, Optimal Control has been closely connected to industrial applications, starting with aerospace. The program for the Gainesville conference, which reflected the rich cross-disci plinary flavor of the field, included aerospace applications as well as both novel and emerging applications to superconductors, diffractive optics, non linear optics, structural analysis, bioreactors, corrosion detection, acoustic flow, process design in chemical engineering, hydroelectric power plants, sterilization of canned foods, robotics, and thermoelastic plates and shells. The three days of the conference were organized around the three confer ence themes, theory, algorithms, and applications. This book is a collection of the papers presented at the Gainesville conference. We would like to take this opportunity to thank the sponsors and participants of the conference, the authors, the referees, and the publisher for making this volume possible.