Lifetime Environmental Impact of Buildings


Book Description

This work discusses the impact of the life of buildings on sustainable development methods. The study of the lifespan of the building is used to assess and manage the environmental impacts associated with all the stages of a product's life, from raw material extraction through to repair, maintenance and 'end of life' scenarios. While several papers have discussed the greenhouse gas emissions of buildings, less research has been done on how these are affected by the lifespan of the building. This book serves to highlight the pertinence of this factor and contributes to providing new ideas on efficiency within the life cycle assessment of a structure.




Life Cycle Assessment in the Built Environment


Book Description

Life cycle assessment enables the identification of a broad range of potential environmental impacts occurring across the entire life of a product, from its design through to its eventual disposal or reuse. The need for life cycle assessment to inform environmental design within the built environment is critical, due to the complex range of materials and processes required to construct and manage our buildings and infrastructure systems. After outlining the framework for life cycle assessment, this book uses a range of case studies to demonstrate the innovative input-output-based hybrid approach for compiling a life cycle inventory. This approach enables a comprehensive analysis of a broad range of resource requirements and environmental outputs so that the potential environmental impacts of a building or infrastructure system can be ascertained. These case studies cover a range of elements that are part of the built environment, including a residential building, a commercial office building and a wind turbine, as well as individual building components such as a residential-scale photovoltaic system. Comprehensively introducing and demonstrating the uses and benefits of life cycle assessment for built environment projects, this book will show you how to assess the environmental performance of your clients’ projects, to compare design options across their entire life and to identify opportunities for improving environmental performance.




Whole Building Life Cycle Assessment


Book Description

This report serves as a guide for the project team to define and model the structural system within the reference building design as required by green building standards and rating systems.







Life Cycle Impact Assessment


Book Description

This book offers a detailed presentation of the principles and practice of life cycle impact assessment. As a volume of the LCA compendium, the book is structured according to the LCIA framework developed by the International Organisation for Standardisation (ISO)passing through the phases of definition or selection of impact categories, category indicators and characterisation models (Classification): calculation of category indicator results (Characterisation); calculating the magnitude of category indicator results relative to reference information (Normalisation); and converting indicator results of different impact categories by using numerical factors based on value-choices (Weighting). Chapter one offers a historical overview of the development of life cycle impact assessment and presents the boundary conditions and the general principles and constraints of characterisation modelling in LCA. The second chapter outlines the considerations underlying the selection of impact categories and the classification or assignment of inventory flows into these categories. Chapters three through thirteen exploreall the impact categories that are commonly included in LCIA, discussing the characteristics of each followed by a review of midpoint and endpoint characterisation methods, metrics, uncertainties and new developments, and a discussion of research needs. Chapter-length treatment is accorded to Climate Change; Stratospheric Ozone Depletion; Human Toxicity; Particulate Matter Formation; Photochemical Ozone Formation; Ecotoxicity; Acidification; Eutrophication; Land Use; Water Use; and Abiotic Resource Use. The final two chapters map out the optional LCIA steps of Normalisation and Weighting.




Environmental Impact Assessment of Buildings


Book Description

This Special Issue covers a wide range of areas—including building orientation, service life, use of photocatalytically active structures and PV facades, implications of transportation system, building types (i.e., high rise, multilevel, commercial, residential), life cycle assessment, and structural engineering—that need to be considered in the environmental impact assessment of buildings, and the chapters include case studies across the globe. Consideration of these strategies would help reduce energy and material consumption, environmental emissions, and waste generation associated with all phases of a building’s life cycle. Chapter 1 demonstrates that green star concrete exhibits the same structural properties as conventional concrete in Australia. Chapter 2 showed that the use of TiO2 as a photocatalyst on the surface of construction materials with a suitable stable binding agent, such as aggregates, would enable building walls to absorb NOx from air. This study found that TiO2 has the potential to reduce ambient concentrations of NOx from areas where this pollutant becomes concentrated under solar irradiation. Chapter 3 presents the life cycle assessment of architecturally integrated glass–glass photovoltaics in building facades to find the appropriate material composition for a multicolored PV façade offering improved environmental performance. Chapter 4 shows that urban office buildings lacking appropriate orientation experienced indoor overheating. Chapter 5 details four modeling approaches that were implemented to estimate buildings’ response towards load shedding. Chapter 6 covers the life cycle GHG emissions of high-rise residential housing block to discover opportunities for environmental improvement. Chapter 7 discusses an LCA framework that took into account variation in the service life of buildings associated with the use of different types of materials. Chapter 8 presents a useful data mining algorithm to conduct life cycle asset management in residential developments built on transport systems.




Wood Modification


Book Description

This book is exclusively concerned with wood modification, although many of these processes are generic and can be applied to other lignocellulosic materials. There have been many rapid developments in wood modification over the past decade and, in particular, there has been considerable progress made in the commercialisation of technologies. Topics covered include: The use of timber in the 21st century Modifying the properties of wood Chemical modification of wood: Acetic Anhydride Modification and reaction with other chemicals Thermal modification of wood Surface modification Impregnation modification Commercialisation of wood modification Environmental consideration and future developments This is the first time that a book has covered all wood modification technologies in one text. Although the book covers the main research developments in wood modification, it also puts wood modification into context and additionally deals with aspects of commercialisation and environmental impact. This book is very timely, because wood modification is undergoing huge developments at the present time, driven in part by environmental concerns regarding the use of wood treated with certain preservatives. There has been considerable commercial interest shown in wood modification over the past decade, with products based upon thermal modification, and furfurylation now being actively being marketed. The next few years will see the commercialisation of acetylation and impregnation modification. This is a new industry, but one that has enormous potential. This book will prove useful to all those with an interest in wood modification including researchers, technologists and professionals working in wood science and timber engineering, wood preservation, and well as professionals in the paper and pulp industries, and those with an interest in the development of renewable materials.




Research Methods in Building Science and Technology


Book Description

This book covers the range of methodological approaches, methods and tools currently used in various areas of building science and technology research and addresses the current lack of research-method literature in this field. The book covers the use of measurement-based methods in which data is collected by measuring the properties and their variations in ‘actual’ physical systems, simulation-based methods which work with ‘models’ of systems or processes to describe, examine and analyze their behaviors, performances and operations, and data-driven methodologies in which data is collected via measurement or simulation to identify and examine the associations and patterns and predict the future in a targeted system. The book presents a survey of key methodologies in various specialized areas of building science and technology research including window systems, building enclosure, energy performance, lighting and daylighting, computational fluid dynamics, indoor and outdoor thermal comfort, and life cycle environmental impacts. Provides advanced insight into the research methods and presents the key methodologies within the field of building science and technology. Reviews simulation-based and experimentation/field-based methods of data collection and analysis in diverse areas of building science and technology, such as energy performance, window and enclosure studies, environmental LCA, daylighting, CFD, and thermal comfort. Provides a range of perspectives from building science faculty and researcher contributors with diverse research interests. Appropriate for use in university courses.




Life Cycle Assessment


Book Description




Embodied Carbon in Buildings


Book Description

This book provides a single-source reference for whole life embodied impacts of buildings. The comprehensive and persuasive text, written by over 50 invited experts from across the world, offers an indispensable resource both to newcomers and to established practitioners in the field. Ultimately it provides a persuasive argument as to why embodied impacts are an essential aspect of sustainable built environments. The book is divided into four sections: measurement, including a strong emphasis on uncertainty analysis, as well as offering practical case studies of individual buildings and a comparison of materials; management, focusing in particular on the perspective of designers and contractors; mitigation, which identifies some specific design strategies as well as challenges; and finally global approaches, six chapters which describe in authoritative detail the ways in which the different regions of the world are tackling the issue.