Light-Emitting Diodes (2nd Edition, 2006)


Book Description

Revised and fully updated, the Second Edition of this textbook offers a comprehensive explanation of the technology and physics of light-emitting diodes (LEDs) such as infrared, visible-spectrum, ultraviolet, and white LEDs made from III–V semiconductors. The elementary properties of LEDs such as electrical and optical characteristics are reviewed, followed by the analysis of advanced device structures. With nine additional chapters, the treatment of LEDs has been vastly expanded, including new material on device packaging, reflectors, UV LEDs, III–V nitride materials, solid-state sources for illumination applications, and junction temperature. Radiative and non-radiative recombination dynamics, methods for improving light extraction, high-efficiency and high-power device designs, white-light emitters with wavelength-converting phosphor materials, optical reflectors, and spontaneous recombination in resonant-cavity structures, are discussed in detail. Fields related to solid-state lighting such as human vision, photometry, colorimetry, and color rendering are covered beyond the introductory level provided in the first edition. The applications of infrared and visible spectrum LEDs in silica fiber, plastic fiber, and free-space communication are also discussed. Semiconductor material data, device design data, and analytic formulae governing LED operation are provided. With exercises, solutions and illustrative examples, this textbook will be of interest to scientists and engineers working on LEDs, and to graduate students in electrical engineering, applied physics, and materials science.




Micro Light Emitting Diode: Fabrication and Devices


Book Description

This book focuses on basic fundamental and applied aspects of micro-LED, ranging from chip fabrication to transfer technology, panel integration, and various applications in fields ranging from optics to electronics to and biomedicine. The focus includes the most recent developments, including the uses in large large-area display, VR/AR display, and biomedical applications. The book is intended as a reference for advanced students and researchers with backgrounds in optoelectronics and display technology. Micro-LEDs are thin, light-emitting diodes, which have attracted considerable research interest in the last few years. They exhibit a set of exceptional properties and unique optical, electrical, and mechanical behaviors of fundamental interest, with the capability to support a range of important exciting applications that cannot be easily addressed with other technologies. The content is divided into two parts to make the book approachable to readers of various backgrounds and interests. The first provides a detailed description with fundamental materials and production approaches and assembly/manufacturing strategies designed to target readers who seek an understanding ofof essential materials and production approaches and assembly/manufacturing strategies designed to target readers who want to understand the foundational aspects. The second provides detailed, comprehensive coverage of the wide range of device applications that have been achieved. This second part targets readers who seek a detailed account of the various applications that are enabled by micro-LEDs.




Light-Emitting Diodes (4th Edition, 2023)


Book Description

The 1st edition of the book “Light-Emitting Diodes” was published in 2003. The 2nd edition was published in 2006. The 3rd edition was published in 2018. The current edition, the 2023 edition, is the most recent update of the book. The book is a thorough discussion of LEDs, particularly its semiconductor physics, electrical, optical, material science, thermal, mechanical, and chemical foundations. The book presents many fundamental aspects of LED technology and includes an in-depth discussion of white light-emitting diodes (LEDs), phosphor materials used in white LEDs, packaging technology, and the various efficiencies and efficacies encountered in the context of LEDs. The background of light, color science, and human vision is provided as well. The fully colored illustrations of the current edition are beneficial given the prominent role of light and color in the field of LEDs. The current edition is published in electronic PDF format in order to make the book affordable and easily accessible to a wide readership.




Polymers for Light-emitting Devices and Displays


Book Description

Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: • The newest polymeric materials and processes beyond the classical structure of PLED • Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. • The novel work carried out on electrospun nanofibers used for LEDs. • The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. • Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. • Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.




Horticultural Reviews, Volume 43


Book Description

Horticultural Reviews presents state-of-the-art reviews on topics in horticultural science and technology covering both basic and applied research. Topics covered include the horticulture of fruits, vegetables, nut crops, and ornamentals. These review articles, written by world authorities, bridge the gap between the specialized researcher and the broader community of horticultural scientists and teachers.




Organic and Inorganic Light Emitting Diodes


Book Description

This book covers a comprehensive range of topics on the physical mechanisms of LEDs (light emitting diodes), scattering effects, challenges in fabrication and efficient enhancement techniques in organic and inorganic LEDs. It deals with various reliability issues in organic/inorganic LEDs like trapping and scattering effects, packaging failures, efficiency droops, irradiation effects, thermal degradation mechanisms, and thermal degradation processes. Features: Provides insights into the improvement of performance and reliability of LEDs Highlights the optical power improvement mechanisms in LEDs Covers the challenges in fabrication and packaging of LEDs Discusses pertinent failures and degradation mechanisms Includes droop minimization techniques This book is aimed at researchers and graduate students in LEDs, illumination engineering, optoelectronics, and polymer/organic materials.




Light-Emitting Diodes (3rd Edition, 2018)


Book Description

The 1st edition of the book “Light-Emitting Diodes” was published in 2003. The 2nd edition was published in 2006. The current 3rd edition of the book, a substantial expansion of the second edition, has 37 Chapters and includes a thorough discussion of white light-emitting diodes (LEDs), phosphor materials used in white LEDs, an expanded discussion of the various efficiencies encountered in the context of LEDs, and packaging materials and device technology. The background of light, color science, and human vision is provided as well. In the current edition, the fully colored illustrations are highly beneficial given the prominent role of light and color in the field of LEDs. The book is intended to be a comprehensive discussion of LEDs, particularly the physics, chemistry, and engineering associated with LEDs. It is published in electronic format in order to make the book affordable and easily accessible to a wide readership.




Oxide and Nitride Semiconductors


Book Description

This is a unique book devoted to the important class of both oxide and nitride semiconductors. It covers processing, properties and applications of ZnO and GaN. The aim of this book is to provide the fundamental and technological issues for both ZnO and GaN.




Understanding LED Illumination


Book Description

Understanding LED Illumination elucidates the science of lighting for light emitting diodes. It presents concepts, theory, simulations, and new design techniques that shine the spotlight on illumination, energy efficiency, and reducing electrical power consumption. The text provides an introduction to the fundamentals of LED lamp design, and highli




Semiconductor Physical Electronics


Book Description

The purpose of this book is to provide the reader with a self-contained treatment of fundamen tal solid state and semiconductor device physics. The material presented in the text is based upon the lecture notes of a one-year graduate course sequence taught by this author for many years in the ·Department of Electrical Engineering of the University of Florida. It is intended as an introductory textbook for graduate students in electrical engineering. However, many students from other disciplines and backgrounds such as chemical engineering, materials science, and physics have also taken this course sequence, and will be interested in the material presented herein. This book may also serve as a general reference for device engineers in the semiconductor industry. The present volume covers a wide variety of topics on basic solid state physics and physical principles of various semiconductor devices. The main subjects covered include crystal structures, lattice dynamics, semiconductor statistics, energy band theory, excess carrier phenomena and recombination mechanisms, carrier transport and scattering mechanisms, optical properties, photoelectric effects, metal-semiconductor devices, the p--n junction diode, bipolar junction transistor, MOS devices, photonic devices, quantum effect devices, and high speed III-V semiconductor devices. The text presents a unified and balanced treatment of the physics of semiconductor materials and devices. It is intended to provide physicists and mat erials scientists with more device backgrounds, and device engineers with a broader knowledge of fundamental solid state physics.