Light-Emitting Diodes and Photodetectors


Book Description

This book provides a detailed overview of the most recent advances in the fascinating world of light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), and photodetectors (PDs). Chapters in Section 1 discuss the different types and designs of LEDs/OLEDs and their use in light output, color rendering, and more. Chapters in Section 2 examine innovative structures, emerging materials, and physical effects of PDs. This book is a useful resource for students and scientists working in the field of photonics and advanced technologies.




Light Emitting Diodes And Photodetectors Based On Iii-nitride And Colloidal Quantum Dot Materials


Book Description

In this work, we first proposed the tandem architecture for solution-processed near infrared PbSe colloidal quantum dot (CQD)-based photodetectors to address the high dark current issue. The tandem architecture not only absorbs the virtue of tandem solar cell by means of efficient photon-to-current conversion, but also functions as the effective barrier that can block the leakage current. More than three orders of magnitude reduction in dark current has been observed, along with an elevated photocurrent. The low temperature current-voltage characteristics revealed that the tandem architecture posed a high energy barrier which effectively blocks the dark current. Our results suggest that tandem architecture can be employed to developing high-performance solution-processed photodetector. The application of tandem photodetectors was further extended to sensors on flexible substrates where little study has been reported to date. Our results on flexible tandem photodetectors validate the high efficiency and detectivity of the tandem architecture. Two different bending states have been studied which revealed the small critical bend radii of ~8mm and ~3mm for tensile and compressive bending, respectively. The photodetector performance remains stable under mechanical stress which offers great potential of CQDs-based tandem photodetectors for flexible device applications. Furthermore, we have demonstrated the chip level integration of flip-chip light emitting diode (LED) with current rectifying GaN Schottky barrier diodes constituting the Wheatstone bridge circuitry for alternating current (AC) driving. The flip-chip LED scheme offers better p-contact, high light extraction efficiency and fast heat dissipation. The reflectance and turn-on voltage were investigated under various p-contact annealing conditions. The flip-chip alternating current LEDs (ACLEDs) demonstrated more than ~23% improvement in terms of energy conversion efficiency over top-emissive ACLEDs and offer the potential of using such device for high brightness, high power, high efficiency and high reliability solid state lighting applications. Finally, built on our studies of LEDs and photodetectors, and of chip level integration of LEDs and GaN Schottky barrier diodes. we, for the first time, proposed the integration of visible LEDs and UV GaN photodetectors for bi-directional optical wireless communication (OWC) applications. The LEDs function as transmitters to emit visible light signal whereas the photodetectors as receivers to collect UV signals. The crosstalk can be neglected due to the superior visible-blind property of GaN UV photodetector. The experimental results demonstrated that the LEDs and photodetectors can work together efficiently which opens up a new avenue for using such device for bi-directional OWC applications.




Mid-infrared Semiconductor Optoelectronics


Book Description

Optoelectronic devices operating in the mid-infrared wavelength range offer applications in a variety of areas from environmental gas monitoring around oil rigs to the detection of narcotics. They could also be used for free-space optical communications, thermal imaging applications and the development of "homeland security" measures. Mid-infrared Semiconductor Optoelectronics is an overview of the current status and technological development in this rapidly emerging area; the basic physics, some of the problems facing the design engineer and a comparison of possible solutions are laid out; the different lasers used as sources for mid-infrared technology are considered; recent work in detectors is reviewed; the last part of the book is concerned with applications. With a world-wide authorship of experts working in many mid-infrared-related fields this book will be an invaluable reference for researchers and graduate students drawn from physics, electronic and electrical engineering and materials science.







Multifunctional Organic–Inorganic Halide Perovskite


Book Description

Perovskite is a well-known structure with the chemical formula ABX3, where A and B are cations coordinated with 12 and 6 anions, respectively, and X is an anion. When a halogen anion is used, the monovalent A and divalent B cations can be stabilized with respect to a tolerance factor ranging from ~0.8 to 1. Since the first report on ~10% efficiency and long-term stability of solid-state perovskite solar cells (PSCs) in 2012 and two subsequent seed reports on perovskite-sensitized solar cells in 2009 and 2011, PSCs have received increasing attention. The power conversion efficiency of PSCs was certified to be more than 25% in 2020, surpassing thin-film solar cell technologies. Methylammonium or formamidinium organic ion–based lead iodide perovskite has been used for high-efficiency PSCs. The first report on solid-state PSCs triggered perovskite photovoltaics, leading to more than 23,000 publications as of October 2021. In addition, halide perovskite has shown excellent performance when applied to light-emitting diodes (LEDs), photodetectors, and resistive memory, indicating that halide perovskite is multifunctional. This book explains the electro-optical and ferroelectric properties of perovskite and details the recent progress in scalable and tandem PSCs as well as perovskite LEDs and resistive memory. It is a useful textbook and self-help study guide for advanced undergraduate- and graduate-level students of materials science and engineering, chemistry, chemical engineering, and nanotechnology; for researchers in photovoltaics, LEDs, resistive memory, and perovskite-related opto-electronics; and for general readers who wish to gain knowledge about halide perovskite.




Light-Emitting Diodes


Book Description

Comprehensive in scope, this book covers the latest progresses of theories, technologies and applications of LEDs based on III-V semiconductor materials, such as basic material physics, key device issues (homoepitaxy and heteroepitaxy of the materials on different substrates, quantum efficiency and novel structures, and more), packaging, and system integration. The authors describe the latest developments of LEDs with spectra coverage from ultra-violet (UV) to the entire visible light wavelength. The major aspects of LEDs, such as material growth, chip structure, packaging, and reliability are covered, as well as emerging and novel applications beyond the general and conventional lightings. This book, written by leading authorities in the field, is indispensable reading for researchers and students working with semiconductors, optoelectronics, and optics. Addresses novel LED applications such as LEDs for healthcare and wellbeing, horticulture, and animal breeding; Editor and chapter authors are global leading experts from the scientific and industry communities, and their latest research findings and achievements are included; Foreword by Hiroshi Amano, one of the 2014 winners of the Nobel Prize in Physics for his work on light-emitting diodes.







Semiconductor Physical Electronics


Book Description

The purpose of this book is to provide the reader with a self-contained treatment of fundamen tal solid state and semiconductor device physics. The material presented in the text is based upon the lecture notes of a one-year graduate course sequence taught by this author for many years in the ·Department of Electrical Engineering of the University of Florida. It is intended as an introductory textbook for graduate students in electrical engineering. However, many students from other disciplines and backgrounds such as chemical engineering, materials science, and physics have also taken this course sequence, and will be interested in the material presented herein. This book may also serve as a general reference for device engineers in the semiconductor industry. The present volume covers a wide variety of topics on basic solid state physics and physical principles of various semiconductor devices. The main subjects covered include crystal structures, lattice dynamics, semiconductor statistics, energy band theory, excess carrier phenomena and recombination mechanisms, carrier transport and scattering mechanisms, optical properties, photoelectric effects, metal-semiconductor devices, the p--n junction diode, bipolar junction transistor, MOS devices, photonic devices, quantum effect devices, and high speed III-V semiconductor devices. The text presents a unified and balanced treatment of the physics of semiconductor materials and devices. It is intended to provide physicists and mat erials scientists with more device backgrounds, and device engineers with a broader knowledge of fundamental solid state physics.




Light-Emitting Diodes (4th Edition, 2023)


Book Description

The 1st edition of the book “Light-Emitting Diodes” was published in 2003. The 2nd edition was published in 2006. The 3rd edition was published in 2018. The current edition, the 2023 edition, is the most recent update of the book. The book is a thorough discussion of LEDs, particularly its semiconductor physics, electrical, optical, material science, thermal, mechanical, and chemical foundations. The book presents many fundamental aspects of LED technology and includes an in-depth discussion of white light-emitting diodes (LEDs), phosphor materials used in white LEDs, packaging technology, and the various efficiencies and efficacies encountered in the context of LEDs. The background of light, color science, and human vision is provided as well. The fully colored illustrations of the current edition are beneficial given the prominent role of light and color in the field of LEDs. The current edition is published in electronic PDF format in order to make the book affordable and easily accessible to a wide readership.