Light Scattering in Semiconductor Structures and Superlattices


Book Description

Just over 25 years ago the first laser-excited Raman spectrum of any crystal was obtained. In November 1964, Hobden and Russell reported the Raman spectrum of GaP and later, in June 1965, Russell published the Si spectrum. Then, in July 1965, the forerunner of a series of meetings on light scattering in solids was held in Paris. Laser Raman spectroscopy of semiconductors was at the forefront in new developments at this meeting. Similar meetings were held in 1968 (New York), 1971 (Paris) and 1975 (Campinas). Since then, and apart from the multidisciplinary biennial International Conference on Raman Spectroscopy there has been no special forum for experts in light scattering spectroscopy of semiconductors to meet and discuss latest developments. Meanwhile, technological advances in semiconductor growth have given rise to a veritable renaissance in the field of semiconductor physics. Light scattering spectroscopy has played a crucial role in the advancement of this field, providing valuable information about the electronic, vibrational and structural properties both of the host materials, and of heterogeneous composite structures. On entering a new decade, one in which technological advances in lithography promise to open even broader horirons for semiconductor physics, it seemed to us to be an ideal time to reflect on the achievements of the past decade, to be brought up to date on the current state-of-the-art, and to catch some glimpses of where the field might be headed in the 1990s.




Confined Electrons and Photons


Book Description

The optical properties of semiconductors have played an important role since the identification of semiconductors as "small" bandgap materials in the thinies, due both to their fundamental interest as a class of solids baving specific optical propenies and to their many important applications. On the former aspect we can cite the fundamental edge absorption and its assignment to direct or indirect transitions, many-body effects as revealed by exciton formation and photoconductivity. On the latter aspect, large-scale applications sucb as LEDs and lasers, photovoltaic converters, photodetectors, electro-optics and non-linear optic devices, come to mind. The eighties saw a revitalization of the whole field due to the advent of heterostructures of lower-dimensionality, mainly two-dimensional quantum wells, which through their enhanced photon-matter interaction yielded new devices with unsurpassed performance. Although many of the basic phenomena were evidenced through the seventies, it was this impact on applications which in turn led to such a massive investment in fabrication tools, thanks to which many new structures and materials were studied, yielding funher advances in fundamental physics.




Physics Of Semiconductors - Proceedings Of The 20th International Conference (In 3 Volumes)


Book Description

Gathering top experts in the field, the 20th ICPS proceedings reviews the progress in all aspects of semiconductor physics. The proceedings will include state-of-the-art lectures with special emphasis on exciting new developments. It should serve as excellent material for researchers in this and related fields.




Physics Of Semiconductors, The - Proceedings Of The 22nd International Conference (In 3 Volumes)


Book Description

These proceedings review the progress in most aspects of semiconductor physics, including those related to materials, processing and devices. The conference continues the tradition of the ICPS series and these volumes include state-of-the-art lectures. The plenary and invited papers address areas of major interest.These volumes will serve as excellent material for researchers in semiconductor physics and related fields.




Gallium Arsenide and Related Compounds 1993, Proceedings of the 20th INT Symposium, 29 August - 2 September 1993, Freiburg im Braunschweig, Germany


Book Description

Gallium Arsenide and Related Compounds 1993 covers III-V compounds from crystal growth of materials to their device applications. Focusing on the fields of optical communications and satellite broadcasting, the book describes the practical applications for GaAs and III-V compounds in devices and circuits, both conventional and those based on quantum effects. It also discusses ultrafast GaAs transistors and integrated circuits, novel laser diodes, and tunneling devices, and considers the direction for future technologies. In addition, this volume addresses the increasing demands of ultra high speed systems that require careful selection of III-V materials to optimize the performance of electronic and optoelectronic components. It is ideal reading for physicists, materials scientists, electrical, and electronics engineers investigating III-V compound materials, properties, and devices.




Condensed Systems of Low Dimensionality


Book Description

The NATO Special Programme Panel on Condensed Systems of Low Dimensionality began its work in 1985 at a time of considerable activity in the field. The Panel has since funded many Advanced Research Workshops, Advanced Study Institutes, Cooperative Research Grants and Research Visits across the breadth of its remit, which stretches from self-organizing organic molecules to semiconductor structures having two, one and zero dimensions. The funded activities, especially the workshops, have allowed researchers from within NATO countries to exchange ideas and work together at a period of development of the field when such interactions are most valuable. Such timely support has undoubtedly assisted the development of national programs, particularly in the countries of the alliance wishing to strengthen their science base. A closing Workshop to mark the end of the Panel's activities was organized in Marmaris, Turkey from April 23-27, 1990, with the same title as the Panel: Condensed systems of Low Dimensionality. This volume contains papers presented at that meeting, which sought to bring together chemists, physicists and engineers from across the spectrum of the Panel's activities to discuss topics of current interest in their special fields and to exchange ideas about the effects of low dimensionality. As the following pages show, this is a topic of extraordinary interest and challenge which produces entirely new scientific phenomena, and at the same time offers the possibility of novel technological applications.




Non-Equilibrium Dynamics of Semiconductors and Nanostructures


Book Description

The advent of the femto-second laser has enabled us to observe phenomena at the atomic timescale. One area to reap enormous benefits from this ability is ultrafast dynamics. Collecting the works of leading experts from around the globe, Non-Equilibrium Dynamics of Semiconductors and Nanostructures surveys recent developments in a variety of areas in ultrafast dynamics. In eight authoritative chapters illustrated by more than 150 figures, this book spans a broad range of new techniques and advances. It begins with a review of spin dynamics in a high-mobility two-dimensional electron gas, followed by the generation, propagation, and nonlinear properties of high-amplitude, ultrashort strain solitons in solids. The discussion then turns to nonlinear optical properties of nanoscale artificial dielectrics, optical properties of GaN self-assembled quantum dots, and optical studies of carrier dynamics and non-equilibrium optical phonons in nitride-based semiconductors. Rounding out the presentation, the book examines ultrafast non-equilibrium electron dynamics in metal nanoparticles, monochromatic acoustic phonons in GaAs, and electromagnetically induced transparency in semiconductor quantum wells. With its pedagogical approach and practical, up-to-date coverage, Non-Equilibrium Dynamics of Semiconductors and Nanostructures allows you to easily put the material into practice, whether you are a seasoned researcher or new to the field.




Handbook of Compound Semiconductors


Book Description

This book reviews the recent advances and current technologies used to produce microelectronic and optoelectronic devices from compound semiconductors. It provides a complete overview of the technologies necessary to grow bulk single-crystal substrates, grow hetero-or homoepitaxial films, and process advanced devices such as HBT's, QW diode lasers, etc.




Application of Particle and Laser Beams in Materials Technology


Book Description

The development of advanced materials with preselected properties is one of the main goals of materials research. Of especial interest are electronics, high-temperature and supemard materials for various applications, as well as alloys with improved wear, corrosion and mechanical resistance properties. The technical challenge connected with the production of these materials is not only associated with the development of new specialised preparation techniques but also with quality control. The energetic charged particle, electron and photon beams offer the possibility of modifying the properties of the near-surface regions of materials without seriously affecting their bulk, and provide unique analytical tools for testing their qUality. This volume includes most of the lectures and contributions delivered at the NATO-funded Advanced Study Institute "Application of Particle and Laser Beams in Materials Technology", which was held in Kallithea, Chalkidiki, in Northern Greece, from the 8th to the 21st of May, 1994 and attended by 73 participants from 21 countries. The aim of this ASI was to provide to the participants an overview of this rapidly expanding field. Fundamental aspects concerning the interactions and collisions on atomic, nuclear and solid state scale were presented in a didactic way, along with the application of a variety of techniques for the solution of problems ranging from the development of electronics materials to corrosion research and from archaeometry to environmental protection.




Festschrift In Honor Of Rogerio Cerqueira Leite


Book Description

This volume will contain contributions from researchers who have been associated with Professor Leite's long career in science and science management. After an extremely successful career as a research physicist at Bell Labs, Professor Leite returned to Brazil, where he was instrumental in founding the Institute of Physics of the State University of Campinas. His record in research and scientific leadership, together with his concern with social issues related to Science and Technology, has made him one of the most respected voices of the Brazilian scientific community.The contributions in this volume are centered around Optical Properties of Condensed Matter. However, given the broad spectrum of Professor Leite's activities, it is natural that some authors have contributed papers on other fields.