Light Water Reactor Fuel Enrichment Beyond the Five Per Cent Limit: Perspectives and Challenges


Book Description

The limitation of 235U enrichment is a current concern among IAEA Member States. In response, work has been undertaken to provide a platform to facilitate a comprehensive review of the current status, prospects and challenges associated with the use of fuels having enrichments higher than 5 % 235U in light water reactors. This publication is the outcome of two technical meetings and compiles the results and conclusions in terms of benefits to be obtained from the use of high assay low enriched uranium (HALEU) fuel, with due consideration of safety issues that arise from its use. It details technological options and corresponding issues regarding fuel and core design, safety analysis and assessments relevant to manufacturing, handling, transportation, storage, irradiation, and performance in normal and accident conditions.







Uranium Enrichment and Nuclear Weapon Proliferation


Book Description

Originally published in 1983, this book presents both the technical and political information necessary to evaluate the emerging threat to world security posed by recent advances in uranium enrichment technology. Uranium enrichment has played a relatively quiet but important role in the history of efforts by a number of nations to acquire nuclear weapons and by a number of others to prevent the proliferation of nuclear weapons. For many years the uranium enrichment industry was dominated by a single method, gaseous diffusion, which was technically complex, extremely capital-intensive, and highly inefficient in its use of energy. As long as this remained true, only the richest and most technically advanced nations could afford to pursue the enrichment route to weapon acquisition. But during the 1970s this situation changed dramatically. Several new and far more accessible enrichment techniques were developed, stimulated largely by the anticipation of a rapidly growing demand for enrichment services by the world-wide nuclear power industry. This proliferation of new techniques, coupled with the subsequent contraction of the commercial market for enriched uranium, has created a situation in which uranium enrichment technology might well become the most important contributor to further nuclear weapon proliferation. Some of the issues addressed in this book are: A technical analysis of the most important enrichment techniques in a form that is relevant to analysis of proliferation risks; A detailed projection of the world demand for uranium enrichment services; A summary and critique of present institutional non-proliferation arrangements in the world enrichment industry, and An identification of the states most likely to pursue the enrichment route to acquisition of nuclear weapons.




Multilateralization of the Nuclear Fuel Cycle


Book Description

Global energy demands are driving a potential expansion in the use of nuclear energy worldwide. It is estimated that the global nuclear power capacity could double by 2030. This could result in dissemination of sensitive nuclear technologies that present obvious risks of proliferation. Certain international institutional mechanisms for controlling access to sensitive materials, facilities and technologies are needed for dealing with this problem. Over the past few years, 12 proposals have been put forward by states, nuclear industry and international organizations, aimed at checking the spread of uranium enrichment and spent fuel reprocessing technologies. This book presents an overview and analysis of these proposals, including an evaluation of the projected international mechanisms.




Fuel Modelling in Accident Conditions


Book Description

This publication summarizes the findings and conclusions of an IAEA coordinated research project (CRP) on fuel modelling in accident conditions, which was initiated under the IAEA Action Plan on Nuclear Safety following the Fukushima accident. The overall aim of the project was to analyse and better understand fuel behavior in accident conditions, with a focus on loss of coolant accidents. In the course of the project the participants used a mixture of data derived from accident simulation experiments, in particular data designed to investigate the fuel behaviour during design basis accident and design extension conditions. They carried out calculations on priority cases selected from a matrix of cases identified at the first research coordination meeting and designed to support their individual priorities. These priority cases were chosen as the best available to help determine which of the many models used in the codes best reflect reality. The CRP provided an ideal platform to compare their code results with others and especially with experimental data, to which they otherwise would not have had access. The achievements made within this CRP fostered new collaborations and enhanced the development and improvement of common models and highlighted differences in the interpretation of some experiments and therefore in the use of the codes ? the so-called user effects.




Internationalization of the Nuclear Fuel Cycle


Book Description

The so-called nuclear renaissance has increased worldwide interest in nuclear power. This potential growth also has increased, in some quarters, concern that nonproliferation considerations are not being given sufficient attention. In particular, since introduction of many new power reactors will lead to requiring increased uranium enrichment services to provide the reactor fuel, the proliferation risk of adding enrichment facilities in countries that do not have them now led to proposals to provide the needed fuel without requiring indigenous enrichment facilities. Similar concerns exist for reprocessing facilities. Internationalization of the Nuclear Fuel Cycle summarizes key issues and analyses of the topic, offers some criteria for evaluating options, and makes findings and recommendations to help the United States, the Russian Federation, and the international community reduce proliferation and other risks, as nuclear power is used more widely. This book is intended for all those who are concerned about the need for assuring fuel for new reactors and at the same time limiting the spread of nuclear weapons. This audience includes the United States and Russia, other nations that currently supply nuclear material and technology, many other countries contemplating starting or growing nuclear power programs, and the international organizations that support the safe, secure functioning of the international nuclear fuel cycle, most prominently the International Atomic Energy Agency.




Material Properties of Unirradiated Uranium-Molybdenum (U-Mo) Fuel for Research Reactors


Book Description

This publication presents the material properties of all unirradiated Uranium-Molybdenum (U-Mo) fuel constituents that are essential for fuel designers and reactor operators to evaluate the fuel's performance and safety for research reactors. Many significant advances in the understanding and development of low enriched uranium U-Mo fuels have been made since 2004, stimulated by the need to understand irradiation behavior and early fuel failures during testing. The publication presents a comprehensive overview of mechanical and physical property data from U-Mo fuel research







Analysis of Options and Experimental Examination of Fuels for Water Cooled Reactors with Increased Accident Tolerance (Actof)


Book Description

There is high interest in new fuel types with increased accident tolerance. These range from using an oxidation resistant coating on zirconium based cladding to alternate fuel and cladding materials. These new fuels/claddings under development must be licensed before being deployed industrially and therefore research is being undertaken to assess their behaviour in various conditions. This publication arises from an IAEA coordinated research project (CRP) dealing with the acquisition of data through experiments on new fuel types and cladding materials and the development of modelling capacity to predict the behaviour of the components and the integral performance of accident tolerant fuel designs under normal and transient conditions. Demonstrations of improvements under severe accident conditions were documented. Several coated cladding materials were produced, tested, characterized and analysed in round robin tests carried out within the CRP. For improvement and validation of fuel performance codes, several benchmarks were organized to compare and analyse predictions of the extended codes. The findings and conclusions of the CRP are summarized in this publication.




Thorium Fuel Cycle


Book Description

Provides a critical review of the thorium fuel cycle: potential benefits and challenges in the thorium fuel cycle, mainly based on the latest developments at the front end of the fuel cycle, applying thorium fuel cycle options, and at the back end of the thorium fuel cycle.