Lightwave Technology


Book Description

The state of the art of modern lightwave system design Recent advances in lightwave technology have led to an explosion of high-speed global information systems throughout the world. Responding to the growth of this exciting new technology, Lightwave Technology provides a comprehensive and up-to-date account of the underlying theory, development, operation, and management of these systems from the perspective of both physics and engineering. The first independent volume of this two-volume set, Components and Devices, deals with the multitude of silica- and semiconductor-based optical devices. This second volume, Telecommunication Systems, helps readers understand the design of modern lightwave systems, with an emphasis on wavelength-division multiplexing (WDM) systems. * Two introductory chapters cover topics such as modulation formats and multiplexing techniques used to create optical bit streams * Chapters 3 to 5 consider degradation of optical signals through loss, dispersion, and nonlinear impairment during transmission and its corresponding impact on system performance * Chapters 6 to 8 provide readers with strategies for managing degradation induced by amplifier noise, fiber dispersion, and various nonlinear effects * Chapters 9 and 10 discuss the engineering issues involved in the design of WDM systems and optical networks Each chapter includes problems that enable readers to engage and test their new knowledge to solve problems. A CD containing illuminating examples based on RSoft Design Group's award-winning OptSim optical communication system simulation software is included with the book to assist readers in understanding design issues. Finally, extensive, up-to-date references at the end of each chapter enable students and researchers to gather more information about the most recent technology breakthroughs and applications. With its extensive problem sets and straightforward writing style, this is an excellent textbook for upper-level undergraduate and graduate students. Research scientists and engineers working in lightwave technology will use this text as a problem-solving resource and a reference to additional research papers in the field.




Lightwave Technology


Book Description

Originally appeared as Electro-optics and applications in the publisher's catalog. An intermediate title, Introduction to lightwave technology is noted in CIP. The final and correct title appears above. Covers the basic techniques of generating, modulating, transmitting and receiving light carried information and such elements of geometrical optics which are indispensable for the understanding of optical communications, opto-electronic position sensing and insulated signal coupling. Annotation copyrighted by Book News, Inc., Portland, OR




Lightwave Technology


Book Description

The state of the art of modern lightwave system design Recent advances in lightwave technology have led to an explosion ofhigh-speed global information systems throughout the world.Responding to the growth of this exciting new technology, LightwaveTechnology provides a comprehensive and up-to-date account of theunderlying theory, development, operation, and management of thesesystems from the perspective of both physics and engineering. The first independent volume of this two-volume set, Components andDevices, deals with the multitude of silica- andsemiconductor-based optical devices. This second volume,Telecommunication Systems, helps readers understand the design ofmodern lightwave systems, with an emphasis on wavelength-divisionmultiplexing (WDM) systems. * Two introductory chapters cover topics such as modulation formatsand multiplexing techniques used to create optical bitstreams * Chapters 3 to 5 consider degradation of optical signals throughloss, dispersion, and nonlinear impairment during transmission andits corresponding impact on system performance * Chapters 6 to 8 provide readers with strategies for managingdegradation induced by amplifier noise, fiber dispersion, andvarious nonlinear effects * Chapters 9 and 10 discuss the engineering issues involved in thedesign of WDM systems and optical networks Each chapter includes problems that enable readers to engage andtest their new knowledge to solve problems. A CD containingilluminating examples based on RSoft Design Group's award-winningOptSim optical communication system simulation software is includedwith the book to assist readers in understanding design issues.Finally, extensive, up-to-date references at the end of eachchapter enable students and researchers to gather more informationabout the most recent technology breakthroughs andapplications. With its extensive problem sets and straightforward writing style,this is an excellent textbook for upper-level undergraduate andgraduate students. Research scientists and engineers working inlightwave technology will use this text as a problem-solvingresource and a reference to additional research papers in thefield.




Digital and Analog Fiber Optic Communications for CATV and FTTx Applications


Book Description

This book is intended to provide a step-by-step guide to all design aspects and tradeoffs from theory to application for fiber-optics transceiver electronics. Presenting a compendium of information in a structured way, this book enables the engineer to develop a methodical design approach, a deep understanding of specifications parameters and the reasons behind them, as well as their effects and consequences on system performance, which are essential for proper component design. Further, a fundamental understanding of RF, digital circuit design, and linear and nonlinear phenomena is important in order to achieve the desired performance levels. Becoming familiar with solid-state devices and passives used to build optical receivers and transmitters is also important so one can effectively overcome design limitations.




Optical Fiber Sensing Technologies


Book Description

Optical Fiber Sensing Technologies/ b Explore foundational and advanced topics in optical fiber sensing technologies In Optical Fiber Sensing Technologies: Principles, Techniques, and Applications, a team of distinguished researchers delivers a comprehensive overview of all critical aspects of optical fiber sensing devices, systems, and technologies. The book moves from the basic principles of the technology to innovation methods and a broad range of applications, including Bragg grating sensing technology, intra-cavity laser gas sensing technology, optical coherence tomography, distributed vibration sensing, and acoustic sensing. The accomplished authors bridge the gap between innovative new research in the field and practical engineering solutions, offering readers an unmatched source of practical, application-ready knowledge. Ideal for anyone seeking to further the boundaries of the science of optical fiber sensing or the technological applications for which these techniques are used, Optical Fiber Sensing Technologies: Principles, Techniques, and Applications also includes: Thorough introductions to optical fiber and optical devices, as well as optical fiber Bragg grating sensing technology Practical discussions of Extrinsic-Fabry-Perot-Interferometer-based optical fiber sensing technology, acoustic sensing technology, and high-temperature sensing technology Comprehensive explorations of assemble free micro-interferometer-based optical fiber sensing technology In-depth examinations of optical fiber intra-cavity laser gas sensing technology Perfect for applied and semiconductor physicists, Optical Fiber Sensing Technologies: Principles, Techniques, and Applications is also an invaluable resource for professionals working in the semiconductor, optical, and sensor industries, as well as materials scientists and engineers for measurement and control.




Polarization Optics in Telecommunications


Book Description

The strong investments into optical telecommunications in the late 1990s resulted in a wealth of new research, techniques, component designs, and understanding of polarization effects in fiber. Polarization Optics in Telecommunications brings together recent advances in the field to create a standard, practical reference for component designers and optical fiber communication engineers. Beginning with a sound foundation in electromagnetism, the author offers a dissertation of the spin-vector formalism of polarization and the interaction of light with media. Applications discussed include optical isolators, optical circulators, fiber collimators, and a variety of applied waveplate and prism combinations. Also included in an extended discussion of polarization-mode dispersion (PMD) and polarization-dependent loss (PDL), their representation, behavior, statistical properties, and measurement. This book draws extensively from the technical and patent literature and is an up-to-date reference for researchers and component designers in industry and academia.




Fiber Optics Standard Dictionary


Book Description

Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook was republished by Optical Technologies, Inc. It contained the same glossary. In 1984, the Institute of Electrical and Electronic Engineers published IEEE Standard 812-1984, Definitions of Terms Relating to Fiber Optics. In 1986, with the assistance of this author, the National Communications System published FED-STD-1037A, Glossary of Telecommunications Terms, with a few fiber optics tenns. In 1988, the Electronics Industries Association issued EIA-440A, Fiber Optic Terminology, based primarily on PB82-166257. The International Electrotechnical Commission then pub lished IEC 731, Optical Communications, Terms and Definitions. In 1989, the second edition of this dictionary was published.




Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks


Book Description

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks Presents the technological advancements that enable high spectral-efficiency and high-capacity fiber-optic communication systems and networks This book examines key technology advances in high spectral-efficiency fiber-optic communication systems and networks, enabled by the use of coherent detection and digital signal processing (DSP). The first of this book’s 16 chapters is a detailed introduction. Chapter 2 reviews the modulation formats, while Chapter 3 focuses on detection and error correction technologies for coherent optical communication systems. Chapters 4 and 5 are devoted to Nyquist-WDM and orthogonal frequency-division multiplexing (OFDM). In chapter 6, polarization and nonlinear impairments in coherent optical communication systems are discussed. The fiber nonlinear effects in a non-dispersion-managed system are covered in chapter 7. Chapter 8 describes linear impairment equalization and Chapter 9 discusses various nonlinear mitigation techniques. Signal synchronization is covered in Chapters 10 and 11. Chapter 12 describes the main constraints put on the DSP algorithms by the hardware structure. Chapter 13 addresses the fundamental concepts and recent progress of photonic integration. Optical performance monitoring and elastic optical network technology are the subjects of Chapters 14 and 15. Finally, Chapter 16 discusses spatial-division multiplexing and MIMO processing technology, a potential solution to solve the capacity limit of single-mode fibers. Contains basic theories and up-to-date technology advancements in each chapter Describes how capacity-approaching coding schemes based on low-density parity check (LDPC) and spatially coupled LDPC codes can be constructed by combining iterative demodulation and decoding Demonstrates that fiber nonlinearities can be accurately described by some analytical models, such as GN-EGN model Presents impairment equalization and mitigation techniques Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks is a reference for researchers, engineers, and graduate students.







Optical Code Division Multiple Access Communication Networks


Book Description

Optical code division multiple access (OCDMA) communication network technology will play an important role in future optical networks, such as optical access and metropolitan area networks. OCDMA technology can also be applied to implement optical signal multiplexing and label switching on backbone networks. Optical Code Division Multiple Access Communication Networks - Theory and Applications introduces the code theory of OCDMA, the methods and technologies of OCDMA encoding and decoding, the theory and methods of analyzing OCDMA systems with various receiver models and realizing multiple-class services with different bit rates and QoS. In addition, OCDMA network architectures, protocols and applications are discussed in detail. The up-to-date theoretical and experimental results on OCDMA systems and networks are also reported. A large number of encoding/decoding examples and many analysis and simulation results of code and system performances are given. It is a valuable text and/or reference book for postgraduates majoring in telecommunication and photonics to obtain a well-knit theoretical foundation and for engineers in R&D and management of optical communications. Dr. Yin is an Associate Professor of the School of Electronics Engineering and Computer Science at Peking University, China, and was a Visiting Research Fellow of Optoelectronics Research Centre (ORC) at University of Southampton, UK. Dr. Richardson is a Professor for optical communications and Deputy Director of ORC at University of Southampton, UK, and is responsible for much of the ORC's fiber related activities.