Linear Stability Theory and Three-Dimensional Boundary Layer Transition


Book Description

The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes. Spall, Robert E. and Malik, Mujeeb R. Unspecified Center ...




Stability and Transition in Shear Flows


Book Description

A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.










Theory and Computation in Hydrodynamic Stability


Book Description

The study of hydrodynamic stability is fundamental to many subjects, ranging from geophysics and meteorology through to engineering design. This treatise covers both classical and modern aspects of the subject, systematically developing it from the simplest physical problems, then progressing to the most complex, considering linear and nonlinear situations, and analyzing temporal and spatial stability. The authors examine each problem both analytically and numerically. Many relevant fluid flows are treated, including those where the fluid may be compressible, or those from geophysics, or those that require salient geometries for description. Details of initial-value problems are explored equally with those of stability. The text includes copious illustrations and an extensive bibliography, making it suitable for courses on hydrodynamic stability or as an authoritative reference for researchers. In this second edition the opportunity has been taken to update the text and, most importantly, provide solutions to the numerous extended exercises.




Principles of Turbulence Control


Book Description

This book introduces the mathematical techniques for turbulence control in a form suitable for inclusion in an engineering degree program at both undergraduate and postgraduate levels whilst also making it useful to researchers and industrial users of the concepts. It uses a mix of theory, computation and experimental results to present and illustrate the methodologies. It is based on the three part structure, wall turbulence, open loop control and feedback control with emphasis on optimal control methodologies. The book also includes an introduction of basic principles and fundamentals followed by a chapter on the structure of wall turbulence with emphasis on coherent structures. Elsewhere there is focus on control methods of wall turbulence by manipulating the boundaries though their motion and by applying control forces throughout the flow volume. The last two chapters will describe the linear and non-linear optimal controls. This integrated approach will help not only researchers interested in the topic but also graduate or advanced undergraduate students in their course work.




Prandtl’s Essentials of Fluid Mechanics


Book Description

This book is an update and extension of the classic textbook by Ludwig Prandtl, Essentials of Fluid Mechanics. It is based on the 10th German edition with additional material included. Chapters on wing aerodynamics, heat transfer, and layered flows have been revised and extended, and there are new chapters on fluid mechanical instabilities and biomedical fluid mechanics. References to the literature have been kept to a minimum, and the extensive historical citations may be found by referring to previous editions. This book is aimed at science and engineering students who wish to attain an overview of the various branches of fluid mechanics. It will also be useful as a reference for researchers working in the field of fluid mechanics.







Stability of Time Dependent and Spatially Varying Flows


Book Description

This volume is the collection of papers presented at the workshop on 'The Stability of Spatially Varying and Time Dependent Flows" sponsored by the Institute for Computer Applications in Science and Engineering (lCASE) and NASA Langley Research Center (LaRC) during August 19- 23, 1985. The purpose of this workshop was to bring together some of the experts in the field for an exchange of ideas to update the current status of knowledge and to help identify trends for future research. Among the invited speakers were D.M. Bushnell, M. Goldstein, P. Hall, Th. Herbert, R.E. Kelly, L. Mack, A.H. Nayfeh, F.T. Smith, and C. von Kerczek. The contributed papers were by A. Bayliss, R. Bodonyi, S. Cowley, C. Grosch, S. Lekoudis, P. Monkewitz, A. Patera, and C. Streett. In the first article, Bushnell provides a historical background on laminar flow control (LFC) research and summarizes the crucial role played by stability theory in LFC system design. He also identifies problem areas in stability theory requiring further research from the view-point of ap plications to LFC design. It is an excellent article for theoreticians looking for some down-to-earth applications of stability theory.