Log-Linear Models, Extensions, and Applications


Book Description

Advances in training models with log-linear structures, with topics including variable selection, the geometry of neural nets, and applications. Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, covering the underlying geometry, optimization techniques, and multiple applications. The first chapter shows readers the inner workings of machine learning, providing insights into the geometry of log-linear and neural net models. The other chapters range from introductory material to optimization techniques to involved use cases. The book, which grew out of a NIPS workshop, is suitable for graduate students doing research in machine learning, in particular deep learning, variable selection, and applications to speech recognition. The contributors come from academia and industry, allowing readers to view the field from both perspectives. Contributors Aleksandr Aravkin, Avishy Carmi, Guillermo A. Cecchi, Anna Choromanska, Li Deng, Xinwei Deng, Jean Honorio, Tony Jebara, Huijing Jiang, Dimitri Kanevsky, Brian Kingsbury, Fabrice Lambert, Aurélie C. Lozano, Daniel Moskovich, Yuriy S. Polyakov, Bhuvana Ramabhadran, Irina Rish, Dimitris Samaras, Tara N. Sainath, Hagen Soltau, Serge F. Timashev, Ewout van den Berg




Log-Linear Models, Extensions, and Applications


Book Description

Advances in training models with log-linear structures, with topics including variable selection, the geometry of neural nets, and applications. Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, covering the underlying geometry, optimization techniques, and multiple applications. The first chapter shows readers the inner workings of machine learning, providing insights into the geometry of log-linear and neural net models. The other chapters range from introductory material to optimization techniques to involved use cases. The book, which grew out of a NIPS workshop, is suitable for graduate students doing research in machine learning, in particular deep learning, variable selection, and applications to speech recognition. The contributors come from academia and industry, allowing readers to view the field from both perspectives. Contributors Aleksandr Aravkin, Avishy Carmi, Guillermo A. Cecchi, Anna Choromanska, Li Deng, Xinwei Deng, Jean Honorio, Tony Jebara, Huijing Jiang, Dimitri Kanevsky, Brian Kingsbury, Fabrice Lambert, Aurélie C. Lozano, Daniel Moskovich, Yuriy S. Polyakov, Bhuvana Ramabhadran, Irina Rish, Dimitris Samaras, Tara N. Sainath, Hagen Soltau, Serge F. Timashev, Ewout van den Berg




Log-Linear Models and Logistic Regression


Book Description

The primary focus here is on log-linear models for contingency tables, but in this second edition, greater emphasis has been placed on logistic regression. The book explores topics such as logistic discrimination and generalised linear models, and builds upon the relationships between these basic models for continuous data and the analogous log-linear and logistic regression models for discrete data. It also carefully examines the differences in model interpretations and evaluations that occur due to the discrete nature of the data. Sample commands are given for analyses in SAS, BMFP, and GLIM, while numerous data sets from fields as diverse as engineering, education, sociology, and medicine are used to illustrate procedures and provide exercises. Throughoutthe book, the treatment is designed for students with prior knowledge of analysis of variance and regression.




Generalized Linear Models and Extensions, Second Edition


Book Description

Deftly balancing theory and application, this book stands out in its coverage of the derivation of the GLM families and their foremost links. This edition has new sections on discrete response models, including zero-truncated, zero-inflated, censored, and hurdle count models, as well as heterogeneous negative binomial, and more.




Regression Analysis and Linear Models


Book Description

Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.




Interaction Effects in Linear and Generalized Linear Models


Book Description

"This book is remarkable in its accessible treatment of interaction effects. Although this concept can be challenging for students (even those with some background in statistics), this book presents the material in a very accessible manner, with plenty of examples to help the reader understand how to interpret their results." –Nicole Kalaf-Hughes, Bowling Green State University Offering a clear set of workable examples with data and explanations, Interaction Effects in Linear and Generalized Linear Models is a comprehensive and accessible text that provides a unified approach to interpreting interaction effects. The book develops the statistical basis for the general principles of interpretive tools and applies them to a variety of examples, introduces the ICALC Toolkit for Stata, and offers a series of start-to-finish application examples to show students how to interpret interaction effects for a variety of different techniques of analysis, beginning with OLS regression. The author’s website provides a downloadable toolkit of Stata® routines to produce the calculations, tables, and graphics for each interpretive tool discussed. Also available are the Stata® dataset files to run the examples in the book.




Statistical Regression and Classification


Book Description

Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression: * A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods. * Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case. * In view of the voluminous nature of many modern datasets, there is a chapter on Big Data. * Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems. * Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics. * More than 75 examples using real data. The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis. Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.




Interpretable Machine Learning


Book Description

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.




Foundations of Linear and Generalized Linear Models


Book Description

A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.




Generalized Linear Models


Book Description

The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and ot




Recent Books