Logic with a Probability Semantics


Book Description

The present study is an extension of the topic introduced in Dr. Hailperin's Sentential Probability Logic, where the usual true-false semantics for logic is replaced with one based more on probability, and where values ranging from 0 to 1 are subject to probability axioms. Moreover, as the word "sentential" in the title of that work indicates, the language there under consideration was limited to sentences constructed from atomic (not inner logical components) sentences, by use of sentential connectives ("no," "and," "or," etc.) but not including quantifiers ("for all," "there is"). An initial introduction presents an overview of the book. In chapter one, Halperin presents a summary of results from his earlier book, some of which extends into this work. It also contains a novel treatment of the problem of combining evidence: how does one combine two items of interest for a conclusion-each of which separately impart a probability for the conclusion-so as to have a probability for the conclusion basedon taking both of the two items of interest as evidence? Chapter two enlarges the Probability Logic from the first chapter in two respects: the language now includes quantifiers ("for all," and "there is") whose variables range over atomic sentences, notentities as with standard quantifier logic. (Hence its designation: ontological neutral logic.) A set of axioms for this logic is presented. A new sentential notion-the suppositional-in essence due to Thomas Bayes, is adjoined to this logic that later becomes the basis for creating a conditional probability logic. Chapter three opens with a set of four postulates for probability on ontologically neutral quantifier language. Many properties are derived and a fundamental theorem is proved, namely, for anyprobability model (assignment of probability values to all atomic sentences of the language) there will be a unique extension of the probability values to all closed sentences of the language. The chapter concludes by showing the Borel's early denumerableprobability concept (1909) can be justified by its being, in essence, close to Hailperin's probability result applied to denumerable language. The final chapter introduces the notion of conditional-probability to a language having quantifiers of the kind




Foundations of Probabilistic Logic Programming


Book Description

Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. This book aims at providing an overview of the field with a special emphasis on languages under the Distribution Semantics, one of the most influential approaches. The book presents the main ideas for semantics, inference, and learning and highlights connections between the methods. Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online. This 2nd edition aims at reporting the most exciting novelties in the field since the publication of the 1st edition. The semantics for hybrid programs with function symbols was placed on a sound footing. Probabilistic Answer Set Programming gained a lot of interest together with the studies on the complexity of inference. Algorithms for solving the MPE and MAP tasks are now available. Inference for hybrid programs has changed dramatically with the introduction of Weighted Model Integration. With respect to learning, the first approaches for neuro-symbolic integration have appeared together with algorithms for learning the structure for hybrid programs. Moreover, given the cost of learning PLPs, various works proposed language restrictions to speed up learning and improve its scaling.




Probabilistic Logics and Probabilistic Networks


Book Description

While probabilistic logics in principle might be applied to solve a range of problems, in practice they are rarely applied - perhaps because they seem disparate, complicated, and computationally intractable. This programmatic book argues that several approaches to probabilistic logic fit into a simple unifying framework in which logically complex evidence is used to associate probability intervals or probabilities with sentences. Specifically, Part I shows that there is a natural way to present a question posed in probabilistic logic, and that various inferential procedures provide semantics for that question, while Part II shows that there is the potential to develop computationally feasible methods to mesh with this framework. The book is intended for researchers in philosophy, logic, computer science and statistics. A familiarity with mathematical concepts and notation is presumed, but no advanced knowledge of logic or probability theory is required.




Sentential Probability Logic


Book Description

This study presents a logic in which probability values play a semantic role comparable to that of truth values in conventional logic. The difference comes in with the semantic definition of logical consequence. It will be of interest to logicians, both philosophical and mathematical, and to investigators making use of logical inference under uncertainty, such as in operations research, risk analysis, artificial intelligence, and expert systems.




Probabilistic Extensions of Various Logical Systems


Book Description

The contributions in this book survey results on combinations of probabilistic and various other classical, temporal and justification logical systems. Formal languages of these logics are extended with probabilistic operators. The aim is to provide a systematic overview and an accessible presentation of mathematical techniques used to obtain results on formalization, completeness, compactness and decidability. The book will be of value to researchers in logic and it can be used as a supplementary text in graduate courses on non-classical logics.







Foundations of Probabilistic Programming


Book Description

This book provides an overview of the theoretical underpinnings of modern probabilistic programming and presents applications in e.g., machine learning, security, and approximate computing. Comprehensive survey chapters make the material accessible to graduate students and non-experts. This title is also available as Open Access on Cambridge Core.




Probabilistic Inductive Logic Programming


Book Description

This book provides an introduction to probabilistic inductive logic programming. It places emphasis on the methods based on logic programming principles and covers formalisms and systems, implementations and applications, as well as theory.




The Blackwell Guide to Philosophical Logic


Book Description

This volume presents a definitive introduction to twenty core areas of philosophical logic including classical logic, modal logic, alternative logics and close examinations of key logical concepts. The chapters, written especially for this volume by internationally distinguished logicians, philosophers, computer scientists and linguists, provide comprehensive studies of the concepts, motivations, methods, formal systems, major results and applications of their subject areas. The Blackwell Guide to Philosophical Logic engages both general readers and experienced logicians and provides a solid foundation for further study.




The Handbook of Contemporary Semantic Theory


Book Description

The second edition of The Handbook of Contemporary Semantic Theory presents a comprehensive introduction to cutting-edge research in contemporary theoretical and computational semantics. Features completely new content from the first edition of The Handbook of Contemporary Semantic Theory Features contributions by leading semanticists, who introduce core areas of contemporary semantic research, while discussing current research Suitable for graduate students for courses in semantic theory and for advanced researchers as an introduction to current theoretical work