Lower Previsions


Book Description

This book has two main purposes. On the one hand, it provides a concise and systematic development of the theory of lower previsions, based on the concept of acceptability, in spirit of the work of Williams and Walley. On the other hand, it also extends this theory to deal with unbounded quantities, which abound in practical applications. Following Williams, we start out with sets of acceptable gambles. From those, we derive rationality criteria---avoiding sure loss and coherence---and inference methods---natural extension---for (unconditional) lower previsions. We then proceed to study various aspects of the resulting theory, including the concept of expectation (linear previsions), limits, vacuous models, classical propositional logic, lower oscillations, and monotone convergence. We discuss n-monotonicity for lower previsions, and relate lower previsions with Choquet integration, belief functions, random sets, possibility measures, various integrals, symmetry, and representation theorems based on the Bishop-De Leeuw theorem. Next, we extend the framework of sets of acceptable gambles to consider also unbounded quantities. As before, we again derive rationality criteria and inference methods for lower previsions, this time also allowing for conditioning. We apply this theory to construct extensions of lower previsions from bounded random quantities to a larger set of random quantities, based on ideas borrowed from the theory of Dunford integration. A first step is to extend a lower prevision to random quantities that are bounded on the complement of a null set (essentially bounded random quantities). This extension is achieved by a natural extension procedure that can be motivated by a rationality axiom stating that adding null random quantities does not affect acceptability. In a further step, we approximate unbounded random quantities by a sequences of bounded ones, and, in essence, we identify those for which the induced lower prevision limit does not depend on the details of the approximation. We call those random quantities 'previsible'. We study previsibility by cut sequences, and arrive at a simple sufficient condition. For the 2-monotone case, we establish a Choquet integral representation for the extension. For the general case, we prove that the extension can always be written as an envelope of Dunford integrals. We end with some examples of the theory.




Introduction to Imprecise Probabilities


Book Description

In recent years, the theory has become widely accepted and has been further developed, but a detailed introduction is needed in order to make the material available and accessible to a wide audience. This will be the first book providing such an introduction, covering core theory and recent developments which can be applied to many application areas. All authors of individual chapters are leading researchers on the specific topics, assuring high quality and up-to-date contents. An Introduction to Imprecise Probabilities provides a comprehensive introduction to imprecise probabilities, including theory and applications reflecting the current state if the art. Each chapter is written by experts on the respective topics, including: Sets of desirable gambles; Coherent lower (conditional) previsions; Special cases and links to literature; Decision making; Graphical models; Classification; Reliability and risk assessment; Statistical inference; Structural judgments; Aspects of implementation (including elicitation and computation); Models in finance; Game-theoretic probability; Stochastic processes (including Markov chains); Engineering applications. Essential reading for researchers in academia, research institutes and other organizations, as well as practitioners engaged in areas such as risk analysis and engineering.




Advances in Computational Intelligence, Part III


Book Description

These four volumes (CCIS 297, 298, 299, 300) constitute the proceedings of the 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2012, held in Catania, Italy, in July 2012. The 258 revised full papers presented together with six invited talks were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on fuzzy machine learning and on-line modeling; computing with words and decision making; soft computing in computer vision; rough sets and complex data analysis: theory and applications; intelligent databases and information system; information fusion systems; philosophical and methodological aspects of soft computing; basic issues in rough sets; 40th anniversary of the measures of fuziness; SPS11 uncertainty in profiling systems and applications; handling uncertainty with copulas; formal methods to deal with uncertainty of many-valued events; linguistic summarization and description of data; fuzzy implications: theory and applications; sensing and data mining for teaching and learning; theory and applications of intuitionistic fuzzy sets; approximate aspects of data mining and database analytics; fuzzy numbers and their applications; information processing and management of uncertainty in knowledge-based systems; aggregation functions; imprecise probabilities; probabilistic graphical models with imprecision: theory and applications; belief function theory: basics and/or applications; fuzzy uncertainty in economics and business; new trends in De Finetti's approach; fuzzy measures and integrals; multicriteria decision making; uncertainty in privacy and security; uncertainty in the spirit of Pietro Benvenuti; coopetition; game theory; probabilistic approach.




Uncertainty in Engineering


Book Description

This open access book provides an introduction to uncertainty quantification in engineering. Starting with preliminaries on Bayesian statistics and Monte Carlo methods, followed by material on imprecise probabilities, it then focuses on reliability theory and simulation methods for complex systems. The final two chapters discuss various aspects of aerospace engineering, considering stochastic model updating from an imprecise Bayesian perspective, and uncertainty quantification for aerospace flight modelling. Written by experts in the subject, and based on lectures given at the Second Training School of the European Research and Training Network UTOPIAE (Uncertainty Treatment and Optimization in Aerospace Engineering), which took place at Durham University (United Kingdom) from 2 to 6 July 2018, the book offers an essential resource for students as well as scientists and practitioners.




Foundations of Reasoning Under Uncertainty


Book Description

This book draws on papers presented at the 2008 Conference on Information Processing and Management of Uncertainty (IPMU), held in Málaga, Spain. The conference brought together some of the world’s leading experts in the study of uncertainty.




Symbolic and Quantiative Approaches to Resoning with Uncertainty


Book Description

This book constitutes the refereed proceedings of the 12th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2013, held in Utrecht, The Netherlands, in July 2013. The 44 revised full papers presented were carefully reviewed and selected from 89 submissions. Papers come from researchers interested in advancing the technology and from practitioners using uncertainty techniques in real-world applications. The scope of the ECSQARU conferences encompasses fundamental issues, representation, inference, learning, and decision making in qualitative and numeric uncertainty paradigms.




Combining Soft Computing and Statistical Methods in Data Analysis


Book Description

Over the last forty years there has been a growing interest to extend probability theory and statistics and to allow for more flexible modelling of imprecision, uncertainty, vagueness and ignorance. The fact that in many real-life situations data uncertainty is not only present in the form of randomness (stochastic uncertainty) but also in the form of imprecision/fuzziness is but one point underlining the need for a widening of statistical tools. Most such extensions originate in a "softening" of classical methods, allowing, in particular, to work with imprecise or vague data, considering imprecise or generalized probabilities and fuzzy events, etc. About ten years ago the idea of establishing a recurrent forum for discussing new trends in the before-mentioned context was born and resulted in the first International Conference on Soft Methods in Probability and Statistics (SMPS) that was held in Warsaw in 2002. In the following years the conference took place in Oviedo (2004), in Bristol (2006) and in Toulouse (2008). In the current edition the conference returns to Oviedo. This edited volume is a collection of papers presented at the SMPS 2010 conference held in Mieres and Oviedo. It gives a comprehensive overview of current research into the fusion of soft methods with probability and statistics.




Reflections on the Foundations of Probability and Statistics


Book Description

This Festschrift celebrates Teddy Seidenfeld and his seminal contributions to philosophy, statistics, probability, game theory and related areas. The 13 contributions in this volume, written by leading researchers in these fields, are supplemented by an interview with Teddy Seidenfeld that offers an abbreviated intellectual autobiography, touching on topics of timeless interest concerning truth and uncertainty. Indeed, as the eminent philosopher Isaac Levi writes in this volume: "In a world dominated by Alternative Facts and Fake News, it is hard to believe that many of us have spent our life’s work, as has Teddy Seidenfeld, in discussing truth and uncertainty." The reader is invited to share this celebration of Teddy Seidenfeld’s work uncovering truths about uncertainty and the penetrating insights they offer to our common pursuit of truth in the face of uncertainty.




Synergies of Soft Computing and Statistics for Intelligent Data Analysis


Book Description

In recent years there has been a growing interest to extend classical methods for data analysis. The aim is to allow a more flexible modeling of phenomena such as uncertainty, imprecision or ignorance. Such extensions of classical probability theory and statistics are useful in many real-life situations, since uncertainties in data are not only present in the form of randomness --- various types of incomplete or subjective information have to be handled. About twelve years ago the idea of strengthening the dialogue between the various research communities in the field of data analysis was born and resulted in the International Conference Series on Soft Methods in Probability and Statistics (SMPS). This book gathers contributions presented at the SMPS'2012 held in Konstanz, Germany. Its aim is to present recent results illustrating new trends in intelligent data analysis. It gives a comprehensive overview of current research into the fusion of soft computing methods with probability and statistics. Synergies of both fields might improve intelligent data analysis methods in terms of robustness to noise and applicability to larger datasets, while being able to efficiently obtain understandable solutions of real-world problems.




Computational Intelligence for Knowledge-Based System Design


Book Description

The book constitutes the refereed proceedings of the 13th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2010, held in Dortmund, Germany from June 28 - July 2, 2010. The 77 revised full papers were carefully reviewed and selected from 320 submissions and reflect the richness of research in the field of Computational Intelligence and represent developments on topics as: machine learning, data mining, pattern recognition, uncertainty handling, aggregation and fusion of information as well as logic and knowledge processing.