Machine Learning Pocket Reference


Book Description

With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines




Machine Learning Pocket Reference


Book Description

With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines




Data Pipelines Pocket Reference


Book Description

Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting




Data Scientist Pocket Guide


Book Description

Discover one of the most complete dictionaries in data science. KEY FEATURES ● Simplified understanding of complex concepts, terms, terminologies, and techniques. ● Combined glossary of machine learning, mathematics, and statistics. ● Chronologically arranged A-Z keywords with brief description. DESCRIPTION This pocket guide is a must for all data professionals in their day-to-day work processes. This book brings a comprehensive pack of glossaries of machine learning, deep learning, mathematics, and statistics. The extensive list of glossaries comprises concepts, processes, algorithms, data structures, techniques, and many more. Each of these terms is explained in the simplest words possible. This pocket guide will help you to stay up to date of the most essential terms and references used in the process of data analysis and machine learning. WHAT YOU WILL LEARN ● Get absolute clarity on every concept, process, and algorithm used in the process of data science operations. ● Keep yourself technically strong and sound-minded during data science meetings. ● Strengthen your knowledge in the field of Big data and business intelligence. WHO THIS BOOK IS FOR This book is for data professionals, data scientists, students, or those who are new to the field who wish to stay on top of industry jargon and terminologies used in the field of data science. TABLE OF CONTENTS 1. Chapter one: A 2. Chapter two: B 3. Chapter three: C 4. Chapter four: D 5. Chapter five: E 6. Chapter six: F 7. Chapter seven: G 8. Chapter eight: H 9. Chapter nine: I 10. Chapter ten: J 11. Chapter 11: K 12. Chapter 12: L 13. Chapter 13: M 14. Chapter 14: N 15. Chapter 15: O 16. Chapter 16: P 17. Chapter 17: Q 18. Chapter 18: R 19. Chapter 19 : S 20. Chapter 20 : T 21. Chapter 21 : U 22. Chapter 22 : V 23. Chapter 23: W 24. Chapter 24: X 25. Chapter 25: Y 26. Chapter 26 : Z




PyTorch Pocket Reference


Book Description

This concise, easy-to-use reference puts one of the most popular frameworks for deep learning research and development at your fingertips. Author Joe Papa provides instant access to syntax, design patterns, and code examples to accelerate your development and reduce the time you spend searching for answers. Research scientists, machine learning engineers, and software developers will find clear, structured PyTorch code that covers every step of neural network development--from loading data to customizing training loops to model optimization and GPU/TPU acceleration. Quickly learn how to deploy your code to production using AWS, GCP, or Azure, and your ML models to mobile and edge devices. Learn basic PyTorch syntax and design patterns Create custom models and data transforms Train and deploy models using a GPU and TPU Train and test a deep learning classifier Accelerate training using optimization and distributed training Access useful PyTorch libraries and the PyTorch ecosystem




Python Pocket Reference


Book Description

Updated for both Python 3.4 and 2.7, this convenient pocket guide is the perfect on-the-job quick reference. Youâ??ll find concise, need-to-know information on Python types and statements, special method names, built-in functions and exceptions, commonly used standard library modules, and other prominent Python tools. The handy index lets you pinpoint exactly what you need. Written by Mark Lutzâ??widely recognized as the worldâ??s leading Python trainerâ??Python Pocket Reference is an ideal companion to Oâ??Reillyâ??s classic Python tutorials, Learning Python and Programming Python, also written by Mark. This fifth edition covers: Built-in object types, including numbers, lists, dictionaries, and more Statements and syntax for creating and processing objects Functions and modules for structuring and reusing code Pythonâ??s object-oriented programming tools Built-in functions, exceptions, and attributes Special operator overloading methods Widely used standard library modules and extensions Command-line options and development tools Python idioms and hints The Python SQL Database API




Machine Learning Bookcamp


Book Description

The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.




Regular Expression Pocket Reference


Book Description

A guide to the syntax and semantics of regular expressions for Perl 5.8, Ruby, Java, PHP, C#, .NET, Python, JavaScript, and PCRE.




C# 10 Pocket Reference


Book Description

Looking for quick answers for using C# 10? This tightly focused and practical guide tells you exactly what you need to know without long intros or bloated samples. Succinct and easy to browse, this pocket reference is an ideal quick source of information. If you know Java, C++, or an earlier C# version, this guide will help you get rapidly up to speed. All programs and code snippets are available as interactive samples in LINQPad. You can edit these samples and instantly see the results without needing to set up projects in Visual Studio. Written by the authors of C# 9.0 in a Nutshell, this pocket reference covers: C# fundamentals and features new to C# 10 Advanced topics like operator overloading, type constraints, nullable types, operator lifting, closures, patterns, and asynchronous functions LINQ: sequences, lazy execution, standard query operators, and query expressions Unsafe code and pointers, custom attributes, preprocessor directives, and XML documentation




Ruby Pocket Reference


Book Description

Updated for Ruby 2.2, this handy reference offers brief yet clear explanations of Ruby's core elements--from operators to blocks to documentation creation--and highlights the key features you may work with every day. Need to know the correct syntax for a conditional? Forgot the name of that String method? This book is organized to help you find the facts fast. Ruby Pocket Reference, 2nd Edition is ideal for experienced programmers who are new to Ruby. Whether you've come to Ruby because of Rails, or you want to take advantage of this clean, powerful, and expressive language for other applications, this reference will help you easily pinpoint the information you need. You'll find detailed reference material for: Keywords, operators, comments, numbers, and symbols Variables, pre-defined global variables, and regular expressions Conditional statements, method use, classes, and exception handling Methods for the BasicObject, Object, Kernel, String, Array, and Hash classes Time formatting directives New syntax since Ruby 1.9