Macromolecular Physics V1


Book Description

Macromolecular Physics, Volume 1: Crystal Structure, Morphology, Defects provides a unified treatment of crystals of linear macromolecules. This book is organized into four chapters: structure of macromolecules, microscopic structure of crystals, crystal morphology, and defect crystal. This publication specifically discusses the macromolecular hypothesis, molecular conformation, and synthesis of macromolecules. The discovery and proof of the lattice theory, structures of minimum free energy, and crystal structures of macromolecules are also deliberated. This publication likewise covers the macromolecular crystals, macroscopic recognition of defects, and deformation of polymer crystals. This volume is a good reference for physicists, scientists, and specialists concerned with research on crystals of linear macromolecules.




Macromolecular Physics


Book Description

This third volume completes the first part of the project " Macromolecular Physics." The first volume dealt with the description of macromolecular crystals; the second volume dealt with crystal growth; and the third volume summarizes our knowledge of the melting of linear, flexible macromolecules. The discussion in the three volumes goes from reasonably well-established topics, such as the structure, morphology, and defects in crystals, to topics still in flux, such as crystal nucleation, detailed growth mechanisms, and annealing processes, to arrive at the present topics of equilibrium, nonequilibrium, and copolymer melting. Our knowledge is quite limited on many aspects of these latter topics.




Thermal Analysis of Polymeric Materials


Book Description

Table of Contents Table of Contents 1 Atoms, small, and large molecules 2 Basics of thermal analysis 3 Dynamics of chemical and phase changes 4 Thermal analysis tools 5 Structure and properties of materials 6 Single component materials 7 Multiple component materials App. A.1 Table of thermal properties of linear macromolecules and related small molecules - the ATHAS data bank App. A.2 Radiation scattering App. A.3 Derivation of the Rayleigh ratio App. A.4 Neural network predictions App. A.5 Legendre transformations, Maxwell relations, linking of entropy and probability, and derivation of (dS/dT) App. A.6 Boltzmann distribution, harmonic vibration, complex numbers, and normal modes App. A.7 Summary of the basic kinetics of chemical reactions App. A.8 The ITS 1990 and the Krypton-86 length standard App. A.9 Development of classical DTA to DSC App. A.10 Examples of DTA and DSC under extreme conditions App. A.11 Description of an online correction of the heat-flow rate App. A.12 Derivation of the heat-flow equations App. A.13 Description of sawtooth-modulation response App. A.14 An introduction to group theory, definitions of configurations and conformations, and a summary of rational and irrational numbers App. A.15 Summary of birefringence and polarizing microscopy App. A.16 Summary of X-ray diffraction and interference effects App. A.17 Optical analog of electron double diffraction to produce Moire patterns.




Crystallography and Crystal Defects


Book Description

The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of Crystallography and Crystal Defects explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. Fully revised and updated, this book now includes: Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level, Crystallography and Crystal Defects, Third Edition continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.




Macromolecular Physics


Book Description

This third volume completes the first part of the project " Macromolecular Physics." The first volume dealt with the description of macromolecular crystals; the second volume dealt with crystal growth; and the third volume summarizes our knowledge of the melting of linear, flexible macromolecules. The discussion in the three volumes goes from reasonably well-established topics, such as the structure, morphology, and defects in crystals, to topics still in flux, such as crystal nucleation, detailed growth mechanisms, and annealing processes, to arrive at the present topics of equilibrium, nonequilibrium, and copolymer melting. Our knowledge is quite limited on many aspects of these latter topics.




Macromolecular Physics V2


Book Description

Macromolecular Physics, Volume 2: Crystal Nucleation, Growth, Annealing continues the discussion of crystals of linear macromolecules. The text also gives conclusion about the description and formation of crystals. The book covers topics such as the primary, secondary, and tertiary nucleation of crystals; the general growth of crystals; solution and melt crystallization of macromolecules; and the general annealing of crystals. For those who wish to do further reading, the table of contents of Volume 1 is included in the book. The text is recommended for macromolecular physicists, especially those whose focus is on the study of crystals and its different properties.




Polymer Fracture


Book Description

This book on "Polymer Fracture" might as well have been called "Kinetic Theory of Polymer Fracture". The term "kinetic theory", however, needs some de finition or, at least, some explanation. A kinetic theory deals with and particu larly considers the effect of the existence and discrete size, of the motion and of the physical properties of molecules on the macroscopic behavior of an ensemble, gaseous or other. A kinetic theory of strength does have to consider additional aspects such as elastic and anelastic deformations, chemical and physical reactions, and the sequence and distribution of different disintegration steps. In the last fifteen years considerable progress has been made in the latter do mains. The deformation and rupture of molecular chains, crystals, and morphologi cal structures have been intensively investigated. The understanding of the effect of those processes on the strength of polymeric materials has especially been furthered by the development and application of spectroscopical methods (ESR, IR) and of the tools offracture mechanics. It is the aim of this book to relate the conventional and successful statistical, parametrical, and continuum mechanical treatment of fracture phenomena to new results on the behavior of highly stressed molecular chains.




Ordering in Macromolecular Systems


Book Description

This volume summarizes the papers presented at the First Osaka University Macromolecular Symposium OUMS'93 on "Ordering in Macromolecular Systems", which was held at Senri Life Science Center, Osaka, Japan, on June 3 through June 6, 1993. The symposium covered the three topics, (1) Crystallization and Phase Transitions, (2) Polymer Liquid Crystals and (3) Block Copolymers, Polymer Blends and Surfaces, and invited leading scientists in these fields. At present any of these topics is a hot issue in itself and frequently taken up separately in many occasions. It is noted however that all these topics are correlated with each other with the keyword "Ordering" and their combination provides a unique feature of the present symposium in reflecting the interactions among investigators working in these important fields with the common ground expressed by the keyword "Ordering". Nineteen invited lectures and 40 posters of both experiment and theory were presented at the symposium, and the eighteen lectures and ten poster presentations contribute to this volume. In the first topic crystal structures and their transitions were discussed from kinetic as well as static points of view; attention was paid to give a molecular-level interpretation of the structure, phase transition and physical properties, using theories and simulations. The second topic was mainly concerned with static structures and thermodynamic properties of polymer liquid crystals including phase behaviours.