Magnetism of Surfaces, Interfaces, and Nanoscale Materials


Book Description

In the past 30 years, magnetic research has been dominated by the question of how surfaces and interfaces influence the magnetic and transport properties of nanostructures, thin films and multilayers. The research has been particularly important in the magnetic recording industry where the giant magnetoresistance effect led to a new generation of storage devices including hand-held memories such as those found in the ipod. More recently, transfer of spin angular momentum across interfaces has opened a new field for high frequency applications.This book gives a comprehensive view of research at the forefront of these fields. The frontier is expanding through dynamic exchange between theory and experiment. Contributions have been chosen to reflect this, giving the reader a unified overview of the topic. - Addresses both theory and experiment that are vital for gaining an essential understanding of topics at the interface between magnetism and materials science - Chapters written by experts provide great insights into complex material - Discusses fundamental background material and state-of-the-art applications, serving as an indispensable guide for students and professionals at all levels of expertise - Stresses interdisciplinary aspects of the field, including physics, chemistry, nanocharacterization, and materials science - Combines basic materials with applications, thus widening the scope of the book and its readership




Complex Magnetic Nanostructures


Book Description

This book offers a detailed discussion of the complex magnetic behavior of magnetic nanosystems, with its myriad of geometries (e.g. core-shell, heterodimer and dumbbell) and its different applications. It provides a broad overview of the numerous current studies concerned with magnetic nanoparticles, presenting key examples and an in-depth examination of the cutting-edge developments in this field. This contributed volume shares the latest developments in nanomagnetism with a wide audience: from upper undergraduate and graduate students to advanced specialists in both academia and industry. The first three chapters serve as a primer to the more advanced content found later in the book, making it an ideal introductory text for researchers starting in this field. It provides a forum for the critical evaluation of many aspects of complex nanomagnetism that are at the forefront of nanoscience today. It also presents highlights from the extensive literature on the topic, including the latest research in this field.







Magnetic Heterostructures


Book Description

Heterostructures consist of combinations of different materials, which are in contact through at least one interface. Magnetic heterostructures combine different physical properties which do not exist in nature. This book provides the first comprehensive overview of an exciting and fast developing field of research, which has already resulted in numerous applications and is the basis for future spintronic devices.




Theory Of Superconductivity


Book Description

Theory of Superconductivity is primarily intended to serve as a background for reading the literature in which detailed applications of the microscopic theory of superconductivity are made to specific problems.




X-Ray Absorption Spectroscopy of Semiconductors


Book Description

X-ray Absorption Spectroscopy (XAS) is a powerful technique with which to probe the properties of matter, equally applicable to the solid, liquid and gas phases. Semiconductors are arguably our most technologically-relevant group of materials given they form the basis of the electronic and photonic devices that now so widely permeate almost every aspect of our society. The most effective utilisation of these materials today and tomorrow necessitates a detailed knowledge of their structural and vibrational properties. Through a series of comprehensive reviews, this book demonstrates the versatility of XAS for semiconductor materials analysis and presents important research activities in this ever growing field. A short introduction of the technique, aimed primarily at XAS newcomers, is followed by twenty independent chapters dedicated to distinct groups of materials. Topics span dopants in crystalline semiconductors and disorder in amorphous semiconductors to alloys and nanometric material as well as in-situ measurements of the effects of temperature and pressure. Summarizing research in their respective fields, the authors highlight important experimental findings and demonstrate the capabilities and applications of the XAS technique. This book provides a comprehensive review and valuable reference guide for both XAS newcomers and experts involved in semiconductor materials research.




Organic Nanostructures for Next Generation Devices


Book Description

This jaw-dropping window on the future is the first comprehensive overview of the fabrication, fundamental properties, and applications of a new class of nanoscaled organic materials. These materials offer incredible scope to scientists wanting to exploit their optical and electronic properties and offer the potential to create a new generation of tiny devices with powerful applications. Altogether, the book offers a unique integration of organic materials science basics, nanostructured organic materials fabrication, and device applications.




Phosphorene: Physical Properties, Synthesis, and Fabrication


Book Description

This book is the first attempt to systematically present the knowledge and research progress of phosphorene, another elemental 2D material that can be exfoliated by mechanical or liquid methods as the intensively studied graphene. The book provides a comprehensive overview of the synthesis, growth, characterization, and applications of phosphorene. It also compiles cutting-edge research in the related field with respect to thermal conduction, transistors, and electrochemical applications and encompasses the intrinsic properties (structural, electronic, defective, and phononic) of phosphorene. This book provides detailed mechanisms of phenomena observed for phosphorene. It will benefit graduate students of physics, chemistry, electrical and electronics engineering, and materials science and engineering; researchers in nanoscience working on phosphorene and similar 2D materials; and engineers and anyone involved in nanotechnology, nanoelectronics, materials preparation, and device fabrication based on layered materials.




Nanoscale Magnetic Materials and Applications


Book Description

Nanoscale Magnetic Materials and Applications covers exciting new developments in the field of advanced magnetic materials. Readers will find valuable reviews of the current experimental and theoretical work on novel magnetic structures, nanocomposite magnets, spintronic materials, domain structure and domain-wall motion, in addition to nanoparticles and patterned magnetic recording media. Cutting-edge applications in the field are described by leading experts from academic and industrial communities. These include new devices based on domain wall motion, magnetic sensors derived from both giant and tunneling magnetoresistance, thin film devices in micro-electromechanical systems, and nanoparticle applications in biomedicine. In addition to providing an introduction to the advances in magnetic materials and applications at the nanoscale, this volume also presents emerging materials and phenomena, such as magnetocaloric and ferromagnetic shape memory materials, which motivate future development in this exciting field. Nanoscale Magnetic Materials and Applications also features a foreword written by Peter Grünberg, recipient of the 2007 Nobel Prize in Physics.