Magnetohydrodynamic Equilibrium and Stability of Stellarators


Book Description

In this book, we describe in detail a numerical method to study the equilibrium and stability of a plasma confined by a strong magnetic field in toroidal geometry without two-dimensional symmetry. The principal appli cation is to stellarators, which are currently of interest in thermonuclear fusion research. Our mathematical model is based on the partial differential equations of ideal magnetohydrodynamics. The main contribution is a computer code named BETA that is listed in the final chapter. This work is the natural continuation of an investigation that was presented in an early volume of the Springer Series in Computational Physics (cf. [3]). It has been supported over a period of years by the U.S. Department of Energy under Contract DE-AC02-76ER03077 with New York University. We would like to express our gratitude to Dr. Franz Herrnegger for the assistance he has given us with the preparation of the manuscript. We are especially indebted to Connie Engle for the high quality of the final typescript. New York F. BAUER October 1983 O. BETANCOURT P. GARABEDIAN Contents 1. Introduction 1 2. Synopsis of the Method 3 1. Variational principle 3 2. Coordinate system 6 3. Finite Difference Scheme 8 1. Difference equations ....................... " 8 2. Island structure ............................. 10 3. Accelerated iteration procedure .............. . . .. 12 Nonlinear Stability 15 4. 1. Second minimization . . . . . . . . . . . . . . . . .. . . 15 . . . . . 2. Test functions and convergence studies . . . . . . . .. . . 17 . 3. Comparison with exact solutions ................. 19 5. The Mercier Criterion 22 1. Local mode analysis . . . . . . . . . . . . . . . . .. . . 22 . . . . . 2. Computational method . . . . . . . . . . . . . . . .. . . 23 . . . .




Magnetohydrodynamic Equilibrium and Stability of Stellarators


Book Description

In this book, we describe in detail a numerical method to study the equilibrium and stability of a plasma confined by a strong magnetic field in toroidal geometry without two-dimensional symmetry. The principal appli cation is to stellarators, which are currently of interest in thermonuclear fusion research. Our mathematical model is based on the partial differential equations of ideal magnetohydrodynamics. The main contribution is a computer code named BETA that is listed in the final chapter. This work is the natural continuation of an investigation that was presented in an early volume of the Springer Series in Computational Physics (cf. [3]). It has been supported over a period of years by the U.S. Department of Energy under Contract DE-AC02-76ER03077 with New York University. We would like to express our gratitude to Dr. Franz Herrnegger for the assistance he has given us with the preparation of the manuscript. We are especially indebted to Connie Engle for the high quality of the final typescript. New York F. BAUER October 1983 O. BETANCOURT P. GARABEDIAN Contents 1. Introduction 1 2. Synopsis of the Method 3 1. Variational principle 3 2. Coordinate system 6 3. Finite Difference Scheme 8 1. Difference equations ....................... " 8 2. Island structure ............................. 10 3. Accelerated iteration procedure .............. . . .. 12 Nonlinear Stability 15 4. 1. Second minimization . . . . . . . . . . . . . . . . .. . . 15 . . . . . 2. Test functions and convergence studies . . . . . . . .. . . 17 . 3. Comparison with exact solutions ................. 19 5. The Mercier Criterion 22 1. Local mode analysis . . . . . . . . . . . . . . . . .. . . 22 . . . . . 2. Computational method . . . . . . . . . . . . . . . .. . . 23 . . . .







Stellarator and Heliotron Devices


Book Description

This monograph describes plasma physics for magnetic confinement of high temperature plasmas in nonaxisymmetric toroidal magnetic fields or stellarators. The techniques are aimed at controlling nuclear fusion for continuous energy production. While the focus is on the nonaxisymmetric toroidal field, or heliotron, developed at Kyoto University, the physics applies equally to other stellarators and axisymmetric tokamaks. The author covers all aspects of magnetic confinement, formation of magnetic surfaces, magnetohydrodynamic equilibrium and stability, single charged particle confinement, neoclassical transport and plasma heating. He also reviews recent experiments and the prospects for the next generation of devices.




Ideal Magnetohydrodynamics


Book Description




Ideal MHD


Book Description

Comprehensive, self-contained, and clearly written, this book describes the macroscopic equilibrium and stability of high temperature plasmas.




Magnetohydrodynamics and Spectral Theory


Book Description

2 The linearized ideal MHO equations. . . . . . . . . . . . 204 3 Spectral problems corresponding to evolutionary problems . . 211 4 Stability of equilibrium configurations and the Energy Principle 215 5 Alternative forms of the plasma potential energy 220 6 Minimization of the potential energy with respect to a parallel displacement . . . . . . . . . . . . . 222 7 Classification of ideal MHO instabilities . 224 8 The linearized non-ideal MHO equations . 226 Chapter 6. Homogeneous and discretely structured plasma oscillations 229 I Introduction . . . . . . . . . . . . . . . 229 2 Alfven waves in an incompressible ideal plasma 230 3 Cold ideal plasma oscillations. . . . 233 4 Compressible hot plasma oscillations 236 5 Finite resistivity effects . . . . . . . 239 6 Propagation of waves generated by a local source 240 7 Stratified plasma oscillations . . . . . . . . . 247 8 Oscillations of a plasma slab . . . . . . . . . 254 9 Instabilities of an ideal stratified gravitating plasma 256 10 Instabilities of a resistive stratified gravitating plasma. 262 Chapter 7. MHO oscillations of a gravitating plasma slab 265 I Introduction . . . . . . . . . . . . . . . 265 2 Gravitating slab equilibrium . . . . . . . . 266 3 Oscillations of a hot compressible plasma slab 267 4 Investigation of the slab stability via the Energy Principle 270 5 On the discrete spectrum of the operator Kk . . . . . . 274 6 On the essential spectrum of the operator Kk . . . . . . 279 7 On the discrete spectrum embedded in the essential spectrum 282 8 The eigenfunction expansion formula . . . . . . . . . . 285 9 Excitation of plasma oscillations by an external power source . 288 10 The linearized equations governing resistive gravitating plasma slab oscillations . . . . . . . . . . . . . . . . . . . . . 290 II Heuristic investigation of resistive instabilities. . . . . . . . . .