Many-Body Methods for Atoms, Molecules and Clusters


Book Description

This book provides an introduction to many-body methods for applications in quantum chemistry. These methods, originating in field-theory, offer an alternative to conventional quantum-chemical approaches to the treatment of the many-electron problem in molecules. Starting with a general introduction to the atomic and molecular many-electron problem, the book then develops a stringent formalism of field-theoretical many-body theory, culminating in the diagrammatic perturbation expansions of many-body Green's functions or propagators in terms of Feynman diagrams. It also introduces and analyzes practical computational methods, such as the field-tested algebraic-diagrammatic construction (ADC) schemes. The ADC concept can also be established via a wave-function based procedure, referred to as intermediate state representation (ISR), which bridges the gap between propagator and wave-function formulations. Based on the current rapid increase in computer power and the development of efficient computational methods, quantum chemistry has emerged as a potent theoretical tool for treating ever-larger molecules and problems of chemical and physical interest. Offering an introduction to many-body methods, this book appeals to advanced students interested in an alternative approach to the many-electron problem in molecules, and is suitable for any courses dealing with computational methods in quantum chemistry.







Many-body Theory Exposed! Propagator Description Of Quantum Mechanics In Many-body Systems (2nd Edition)


Book Description

This comprehensive textbook on the quantum mechanics of identical particles includes a wealth of valuable experimental data, in particular recent results from direct knockout reactions directly related to the single-particle propagator in many-body theory. The comparison with data is incorporated from the start, making the abstract concept of propagators vivid and accessible. Results of numerical calculations using propagators or Green's functions are also presented. The material has been thoroughly tested in the classroom and the introductory chapters provide a seamless connection with a one-year graduate course in quantum mechanics. While the majority of books on many-body theory deal with the subject from the viewpoint of condensed matter physics, this book emphasizes finite systems as well and should be of considerable interest to researchers in nuclear, atomic, and molecular physics. A unified treatment of many different many-body systems is presented using the approach of self-consistent Green's functions. The second edition contains an extensive presentation of finite temperature propagators and covers the technique to extract the self-energy from experimental data as developed in the dispersive optical model.The coverage proceeds systematically from elementary concepts, such as second quantization and mean-field properties, to a more advanced but self-contained presentation of the physics of atoms, molecules, nuclei, nuclear and neutron matter, electron gas, quantum liquids, atomic Bose-Einstein and fermion condensates, and pairing correlations in finite and infinite systems, including finite temperature.




Many-Body Approach to Electronic Excitations


Book Description

The many-body-theoretical basis and applications of theoretical spectroscopy of condensed matter, e.g. crystals, nanosystems, and molecules are unified in one advanced text for readers from graduate students to active researchers in the field. The theory is developed from first principles including fully the electron-electron interaction and spin interactions. It is based on the many-body perturbation theory, a quantum-field-theoretical description, and Green's functions. The important expressions for ground states as well as electronic single-particle and pair excitations are explained. Based on single-particle and two-particle Green's functions, the Dyson and Bethe-Salpeter equations are derived. They are applied to calculate spectral and response functions. Important spectra are those which can be measured using photoemission/inverse photoemission, optical spectroscopy, and electron energy loss/inelastic X-ray spectroscopy. Important approximations are derived and discussed in the light of selected computational and experimental results. Some numerical implementations available in well-known computer codes are critically discussed. The book is divided into four parts: (i) In the first part the many-electron systems are described in the framework of the quantum-field theory. The electron spin and the spin-orbit interaction are taken into account. Sum rules are derived. (ii) The second part is mainly related to the ground state of electronic systems. The total energy is treated within the density functional theory. The most important approximations for exchange and correlation are delighted. (iii) The third part is essentially devoted to the description of charged electronic excitations such as electrons and holes. Central approximations as Hedin's GW and the T-matrix approximation are discussed.(iv) The fourth part is focused on response functions measured in optical and loss spectroscopies and neutral pair or collective excitations.




The Quantum Mechanics of Many-Body Systems


Book Description

"Unabridged republication of the second edition of the work, originally published in the Pure and applied physics series by Academic Press, Inc., New York, in 1972"--Title page verso.




Many-Body Quantum Theory in Condensed Matter Physics


Book Description

The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.




Green’s Functions in Quantum Physics


Book Description

In this edition the second and main part of the book has been considerably expanded as to cover important applications of the formalism. In Chap.5 a section was added outlining the extensive role of the tight binding (or equivalently the linear combination of atomic-like orbitals) approach to many branches of solid-state physics. Some additional informa tion (including a table of numerical values) regarding square and cubic lattice Green's functions were incorporated. In Chap.6 the difficult subjects of superconductivity and the Kondo effect are examined by employing an appealingly simple connection to the question of the existence of a bound state in a very shallow potential well. The existence of such a bound state depends entirely on the form of the un perturbed density of states near the end of the spectrum: if the density of states blows up there is always at least one bound state. If the density of states approaches zero continuously, a critical depth (and/or width) of the well must be reached in order to have a bound state. The borderline case of a finite discontinuity (which is very important to superconductivity and the Kondo effect) always produces a bound state with an exponentially small binding energy.




Conceptual Density Functional Theory and Its Application in the Chemical Domain


Book Description

In this book, new developments based on conceptual density functional theory (CDFT) and its applications in chemistry are discussed. It also includes discussion of some applications in corrosion and conductivity and synthesis studies based on CDFT. The electronic structure principles—such as the electronegativity equalization principle, the hardness equalization principle, the electrophilicity equalization principle, and the nucleophilicity equalization principle, along studies based on these electronic structure principles—are broadly explained. In recent years some novel methodologies have been developed in the field of CDFT. These methodologies have been used to explore mutual relationships between the descriptors of CDFT, namely electronegativity, hardness, etc. The mutual relationship between the electronegativity and the hardness depend on the electronic configuration of the neutral atomic species. The volume attempts to cover almost all such methodology. Conceptual Density Function Theory and Its Application in the Chemical Domain will be an appropriate guide for research students as well as the supervisors in PhD programs. It will also be valuable resource for inorganic chemists, physical chemists, and quantum chemists. The reviews, research articles, short communications, etc., covered by this book will be appreciated by theoreticians as well as experimentalists.




Nonequilibrium Many-Body Theory of Quantum Systems


Book Description

The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics.




Many-Body Methods in Chemistry and Physics


Book Description

This book describes the mathematical and diagrammatic techniques employed in the popular many-body methods to determine molecular structure, properties and interactions.