Mastering Apache Airflow


Book Description

Empower Your Data Workflow Orchestration and Automation Are you ready to embark on a journey into the world of data workflow orchestration and automation with Apache Airflow? "Mastering Apache Airflow" is your comprehensive guide to harnessing the full potential of this powerful platform for managing complex data pipelines. Whether you're a data engineer striving to optimize workflows or a business analyst aiming to streamline data processing, this book equips you with the knowledge and tools to master the art of Airflow-based workflow automation.




Mastering Apache Spark


Book Description

Unleash the Potential of Distributed Data Processing with Apache Spark Are you prepared to venture into the realm of distributed data processing and analytics with Apache Spark? "Mastering Apache Spark" is your comprehensive guide to unlocking the full potential of this powerful framework for big data processing. Whether you're a data engineer seeking to optimize data pipelines or a business analyst aiming to extract insights from massive datasets, this book equips you with the knowledge and tools to master the art of Spark-based data processing. Key Features: 1. Deep Dive into Apache Spark: Immerse yourself in the core principles of Apache Spark, comprehending its architecture, components, and versatile functionalities. Construct a robust foundation that empowers you to manage big data with precision. 2. Installation and Configuration: Master the art of installing and configuring Apache Spark across diverse platforms. Learn about cluster setup, resource allocation, and configuration tuning for optimal performance. 3. Spark Core and RDDs: Uncover the core of Spark—Resilient Distributed Datasets (RDDs). Explore the functional programming paradigm and leverage RDDs for efficient and fault-tolerant data processing. 4. Structured Data Processing with Spark SQL: Delve into Spark SQL for querying structured data with ease. Learn how to execute SQL queries, perform data manipulations, and tap into the power of DataFrames. 5. Streamlining Data Processing with Spark Streaming: Discover the power of real-time data processing with Spark Streaming. Learn how to handle continuous data streams and perform near-real-time analytics. 6. Machine Learning with MLlib: Master Spark's machine learning library, MLlib. Dive into algorithms for classification, regression, clustering, and recommendation, enabling you to develop sophisticated data-driven models. 7. Graph Processing with GraphX: Embark on a journey through graph processing with Spark's GraphX. Learn how to analyze and visualize graph data to glean insights from complex relationships. 8. Data Processing with Spark Structured Streaming: Explore the world of structured streaming in Spark. Learn how to process and analyze data streams with the declarative power of DataFrames. 9. Spark Ecosystem and Integrations: Navigate Spark's rich ecosystem of libraries and integrations. From data ingestion with Apache Kafka to interactive analytics with Apache Zeppelin, explore tools that enhance Spark's capabilities. 10. Real-World Applications: Gain insights into real-world use cases of Apache Spark across industries. From fraud detection to sentiment analysis, discover how organizations leverage Spark for data-driven innovation. Who This Book Is For: "Mastering Apache Spark" is a must-have resource for data engineers, analysts, and IT professionals poised to excel in the world of distributed data processing using Spark. Whether you're new to Spark or seeking advanced techniques, this book will guide you through the intricacies and empower you to harness the full potential of this transformative framework.




Apache Airflow Best Practices


Book Description

Confidently orchestrate your data pipelines with Apache Airflow by applying industry best practices and scalable strategies Key Features Understand the steps for migrating from Airflow 1.x to 2.x and explore the new features and improvements in version 2.x Learn Apache Airflow workflow authoring through real-world use cases Uncover strategies to operationalize your Airflow instance and pipelines for resilient operations and high throughput Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionData professionals face the monumental task of managing complex data pipelines, orchestrating workflows across diverse systems, and ensuring scalable, reliable data processing. This definitive guide to mastering Apache Airflow, written by experts in engineering, data strategy, and problem-solving across tech, financial, and life sciences industries, is your key to overcoming these challenges. It covers everything from the basics of Airflow and its core components to advanced topics such as custom plugin development, multi-tenancy, and cloud deployment. Starting with an introduction to data orchestration and the significant updates in Apache Airflow 2.0, this book takes you through the essentials of DAG authoring, managing Airflow components, and connecting to external data sources. Through real-world use cases, you’ll gain practical insights into implementing ETL pipelines and machine learning workflows in your environment. You’ll also learn how to deploy Airflow in cloud environments, tackle operational considerations for scaling, and apply best practices for CI/CD and monitoring. By the end of this book, you’ll be proficient in operating and using Apache Airflow, authoring high-quality workflows in Python for your specific use cases, and making informed decisions crucial for production-ready implementation.What you will learn Explore the new features and improvements in Apache Airflow 2.0 Design and build data pipelines using DAGs Implement ETL pipelines, ML workflows, and other advanced use cases Develop and deploy custom plugins and UI extensions Deploy and manage Apache Airflow in cloud environments such as AWS, GCP, and Azure Describe a path for the scaling of your environment over time Apply best practices for monitoring and maintaining Airflow Who this book is for This book is for data engineers, developers, IT professionals, and data scientists who want to optimize workflow orchestration with Apache Airflow. It's perfect for those who recognize Airflow’s potential and want to avoid common implementation pitfalls. Whether you’re new to data, an experienced professional, or a manager seeking insights, this guide will support you. A functional understanding of Python, some business experience, and basic DevOps skills are helpful. While prior experience with Airflow is not required, it is beneficial.




Mastering Databricks Lakehouse Platform


Book Description

Enable data and AI workloads with absolute security and scalability KEY FEATURES ● Detailed, step-by-step instructions for every data professional starting a career with data engineering. ● Access to DevOps, Machine Learning, and Analytics wirthin a single unified platform. ● Includes design considerations and security best practices for efficient utilization of Databricks platform. DESCRIPTION Starting with the fundamentals of the databricks lakehouse platform, the book teaches readers on administering various data operations, including Machine Learning, DevOps, Data Warehousing, and BI on the single platform. The subsequent chapters discuss working around data pipelines utilizing the databricks lakehouse platform with data processing and audit quality framework. The book teaches to leverage the Databricks Lakehouse platform to develop delta live tables, streamline ETL/ELT operations, and administer data sharing and orchestration. The book explores how to schedule and manage jobs through the Databricks notebook UI and the Jobs API. The book discusses how to implement DevOps methods on the Databricks Lakehouse platform for data and AI workloads. The book helps readers prepare and process data and standardizes the entire ML lifecycle, right from experimentation to production. The book doesn't just stop here; instead, it teaches how to directly query data lake with your favourite BI tools like Power BI, Tableau, or Qlik. Some of the best industry practices on building data engineering solutions are also demonstrated towards the end of the book. WHAT YOU WILL LEARN ● Acquire capabilities to administer end-to-end Databricks Lakehouse Platform. ● Utilize Flow to deploy and monitor machine learning solutions. ● Gain practical experience with SQL Analytics and connect Tableau, Power BI, and Qlik. ● Configure clusters and automate CI/CD deployment. ● Learn how to use Airflow, Data Factory, Delta Live Tables, Databricks notebook UI, and the Jobs API. WHO THIS BOOK IS FOR This book is for every data professional, including data engineers, ETL developers, DB administrators, Data Scientists, SQL Developers, and BI specialists. You don't need any prior expertise with this platform because the book covers all the basics. TABLE OF CONTENTS 1. Getting started with Databricks Platform 2. Management of Databricks Platform 3. Spark, Databricks, and Building a Data Quality Framework 4. Data Sharing and Orchestration with Databricks 5. Simplified ETL with Delta Live Tables 6. SCD Type 2 Implementation with Delta Lake 7. Machine Learning Model Management with Databricks 8. Continuous Integration and Delivery with Databricks 9. Visualization with Databricks 10. Best Security and Compliance Practices of Databricks




Mastering MLOps Architecture: From Code to Deployment


Book Description

Harness the power of MLOps for managing real time machine learning project cycle KEY FEATURES ● Comprehensive coverage of MLOps concepts, architecture, tools and techniques. ● Practical focus on building end-to-end ML Systems for Continual Learning with MLOps. ● Actionable insights on CI/CD, monitoring, continual model training and automated retraining. DESCRIPTION MLOps, a combination of DevOps, data engineering, and machine learning, is crucial for delivering high-quality machine learning results due to the dynamic nature of machine learning data. This book delves into MLOps, covering its core concepts, components, and architecture, demonstrating how MLOps fosters robust and continuously improving machine learning systems. By covering the end-to-end machine learning pipeline from data to deployment, the book helps readers implement MLOps workflows. It discusses techniques like feature engineering, model development, A/B testing, and canary deployments. The book equips readers with knowledge of MLOps tools and infrastructure for tasks like model tracking, model governance, metadata management, and pipeline orchestration. Monitoring and maintenance processes to detect model degradation are covered in depth. Readers can gain skills to build efficient CI/CD pipelines, deploy models faster, and make their ML systems more reliable, robust and production-ready. Overall, the book is an indispensable guide to MLOps and its applications for delivering business value through continuous machine learning and AI. WHAT YOU WILL LEARN ● Architect robust MLOps infrastructure with components like feature stores. ● Leverage MLOps tools like model registries, metadata stores, pipelines. ● Build CI/CD workflows to deploy models faster and continually. ● Monitor and maintain models in production to detect degradation. ● Create automated workflows for retraining and updating models in production. WHO THIS BOOK IS FOR Machine learning specialists, data scientists, DevOps professionals, software development teams, and all those who want to adopt the DevOps approach in their agile machine learning experiments and applications. Prior knowledge of machine learning and Python programming is desired. TABLE OF CONTENTS 1. Getting Started with MLOps 2. MLOps Architecture and Components 3. MLOps Infrastructure and Tools 4. What are Machine Learning Systems? 5. Data Preparation and Model Development 6. Model Deployment and Serving 7. Continuous Delivery of Machine Learning Models 8. Continual Learning 9. Continuous Monitoring, Logging, and Maintenance




Mastering Flask Web and API Development


Book Description

Discover how to construct API and web components, build enterprise-grade applications, design and implement unit and behavioral testing, and plan deployment strategies for scalable Flask 3 applications Key Features Implement web and API applications using both standard and asynchronous Flask components Improve your dev experience with signals, route decorators, async/await design patterns, context managers, and nested blueprints Tie all the features together in each chapter through practical, relatable applications Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionFlask is a popular Python framework known for its lightweight and modular design. Mastering Flask Web and API Development will take you on an exhaustive tour of the Flask environment and teach you how to build a production-ready application. You’ll start by installing Flask and grasping fundamental concepts, such as MVC and ORM database access. Next, you’ll master structuring applications for scalability through Flask blueprints. As you progress, you’ll explore both SQL and NoSQL databases while creating REST APIs and implementing JWT authentication, and improve your skills in role-based access security, utilizing LDAP, OAuth, OpenID, and databases. The new project structure, managed by context managers, as well as ASGI support, has revolutionized Flask, and you’ll get to grips with these crucial upgrades. You'll also explore out-of-the-box integrations with technologies, such as RabbitMQ, Celery, NoSQL databases, PostgreSQL, and various external modules. The concluding chapters discuss enterprise-related challenges where Flask proves its mettle as a core solution. By the end of this book, you’ll be well-versed with Flask, seeing it not only as a lightweight web and API framework, but also as a potent problem-solving tool in your daily work, addressing integration and enterprise issues alongside Django and FastAPI.What you will learn Prepare, set up, and configure development environments for both API and web applications Explore built-in serializers and encoders that processes request and response data Solve big data issues by integrating Flask applications with NoSQL databases Apply various ORM and ODM techniques to build model and repository layers Integrate with OpenAPI, Circuit Breaker, ZooKeeper, and OpenTracing to build scalable API applications Use Flask middleware to provide CRUD transactions for Flutter-based mobile applications Who this book is for This book is for proficient Python developers seeking a deeper understanding of the Flask framework as a solution for tackling enterprise challenges. It is also a great resource for Flask-savvy readers eager to learn more about the framework’s advanced capabilities and new features.




Mastering Multi-Cloud Paradigm for Enterprises


Book Description

TAGLINE Building Tomorrow's Enterprise: Embracing the Multi-Cloud Era with AWS, Azure, and GCP. KEY FEATURES ● Comprehensive guide to multi-cloud architecture designs and best practices. ● Expert insights on networking strategies and efficient DNS design for multi-cloud. ● Emphasis on security, performance, cost-efficiency, and robust disaster recovery. DESCRIPTION This book is a comprehensive guide designed for IT professionals and enterprise architects, providing step-by-step instructions for creating and implementing tailored multi-cloud strategies. Covering key areas such as security, performance, cost management, and disaster recovery, it ensures robust and efficient cloud deployments. This book will help you learn to develop custom multi-cloud solutions that align with the organization's specific needs and goals. It includes in-depth discussions on cloud design patterns, architecture designs, and industry best practices. The book offers advanced networking strategies and DNS design insights to optimize system reliability, scalability, and performance. Practical tips help readers navigate the complexities of multi-cloud environments, ensuring seamless integration and management across different cloud platforms. Whether new to cloud concepts or an experienced practitioner looking to enhance your skills, this book equips you with the knowledge and tools needed to excel in your role. By following expert guidance and best practices, you can confidently design and implement multi-cloud strategies that foster innovation and operational excellence in your organization. WHAT WILL YOU LEARN ● Understand the fundamentals and benefits of multi-cloud environments. ● Gain a solid grasp of essential cloud computing concepts and terminologies. ● Learn how to establish a robust foundation for multi-cloud deployments. ● Implement best practices for securing and governing multi-cloud architectures. ● Design effective network solutions tailored for multi-cloud environments. ● Optimize DNS design and management across multiple cloud platforms. ● Apply architecture design patterns to enhance system reliability and scalability. ● Manage costs effectively and implement financial operations in a multi-cloud setting. ● Leverage automation and orchestration to streamline multi-cloud operations. ● Monitor and manage performance and health across various cloud services. ● Ensure robust disaster recovery and build resilient systems for multi-cloud. WHO IS THIS BOOK FOR? This book is for IT professionals, cloud architects, enterprise architects, and cloud engineers with a basic understanding of cloud computing concepts. It is ideal for those looking to deepen their knowledge of multi-cloud strategies and best practices to enhance their organization's cloud infrastructure. TABLE OF CONTENTS 1. Getting Started with Multi-Cloud 2. Cloud Computing Concepts 3. Building a Solid Foundation 4. Security and Governance in Multi-Cloud 5. Designing Network Solution 6. DNS in a Multi-Cloud Landscape 7. Architecture Design Pattern in Multi-Cloud 8. FinOps in Multi-Cloud 9. The Role of Automation and Orchestration 10. Multi-Cloud Monitoring 11. Resilience and Disaster Recovery Index




Mastering Data Engineering: Advanced Techniques with Apache Hadoop and Hive


Book Description

Immerse yourself in the realm of big data with "Mastering Data Engineering: Advanced Techniques with Apache Hadoop and Hive," your definitive guide to mastering two of the most potent technologies in the data engineering landscape. This book provides comprehensive insights into the complexities of Apache Hadoop and Hive, equipping you with the expertise to store, manage, and analyze vast amounts of data with precision. From setting up your initial Hadoop cluster to performing sophisticated data analytics with HiveQL, each chapter methodically builds on the previous one, ensuring a robust understanding of both fundamental concepts and advanced methodologies. Discover how to harness HDFS for scalable and reliable storage, utilize MapReduce for intricate data processing, and fully exploit data warehousing capabilities with Hive. Targeted at data engineers, analysts, and IT professionals striving to advance their proficiency in big data technologies, this book is an indispensable resource. Through a blend of theoretical insights, practical knowledge, and real-world examples, you will master data storage optimization, advanced Hive functionalities, and best practices for secure and efficient data management. Equip yourself to confront big data challenges with confidence and skill with "Mastering Data Engineering: Advanced Techniques with Apache Hadoop and Hive." Whether you're a novice in the field or seeking to expand your expertise, this book will be your invaluable guide on your data engineering journey.




200 Tips for Mastering Generative AI


Book Description

In the rapidly evolving landscape of artificial intelligence, Generative AI stands out as a transformative force with the potential to revolutionize industries and reshape our understanding of creativity and automation. From its inception, Generative AI has captured the imagination of researchers, developers, and entrepreneurs, offering unprecedented capabilities in generating new data, simulating complex systems, and solving intricate problems that were once considered beyond the reach of machines. This book, "200 Tips for Mastering Generative AI," is a comprehensive guide designed to empower you with the knowledge and practical insights needed to harness the full potential of Generative AI. Whether you are a seasoned AI practitioner, a curious researcher, a forward-thinking entrepreneur, or a passionate enthusiast, this book provides valuable tips and strategies to navigate the vast and intricate world of Generative AI. We invite you to explore, experiment, and innovate with the knowledge you gain from this book. Together, we can unlock the full potential of Generative AI and shape a future where intelligent machines and human creativity coexist and collaborate in unprecedented ways. Welcome to "200 Tips for Mastering Generative AI." Your journey into the fascinating world of Generative AI begins here.




MASTERING DATA QUALITY MANAGEMENT


Book Description

Lacking coherence and ambiguity Product information drives up the cost of compliance, slows down the time it takes to bring a product to market, creates inefficiencies in the supply chain, and results in market penetration that is lower than anticipated. Lacking coherence and ambiguity in addition to obscuring revenue recognition, posing dangers, causing sales inefficiencies, leading to ill-advised marketing campaigns, and causing consumers to lose loyalty, consumer information. Due to the fact that the data from suppliers is inconsistent and fragmented, there is a greater likelihood of exceptions from suppliers, there is less efficiency in the supply chain, and there is a negative impact on the attempts to manage spending. "Product," "Customer," and "Supplier" are only few of the significant business entities that are included in Master Data. There are many more important business entities as well. Master data is the queen when it comes to the analytical and transactional operations that are necessary for the operation of a business. The purpose of Master Data Management (MDM), which is a collection of applications and technology that consolidates, cleans, and augments this data, is to achieve the aim of synchronizing this corporate master data with all of the applications, business processes, and analytical tools. As a direct result of this, operational efficiency, effective reporting, and decision-making that is founded on facts are all significantly improved. Over the course of the last several decades, the landscapes of information technology have seen the proliferation of a multitude of new systems, applications, and technologies. A significant number of data problems have surfaced as a consequence of this disconnected environment.




Recent Books