Introduction to Quantum Computing


Book Description

This book provides a self-contained undergraduate course on quantum computing based on classroom-tested lecture notes. It reviews the fundamentals of quantum mechanics from the double-slit experiment to entanglement, before progressing to the basics of qubits, quantum gates, quantum circuits, quantum key distribution, and some of the famous quantum algorithms. As well as covering quantum gates in depth, it also describes promising platforms for their physical implementation, along with error correction, and topological quantum computing. With quantum computing expanding rapidly in the private sector, understanding quantum computing has never been so important for graduates entering the workplace or PhD programs. Assuming minimal background knowledge, this book is highly accessible, with rigorous step-by-step explanations of the principles behind quantum computation, further reading, and end-of-chapter exercises, ensuring that undergraduate students in physics and engineering emerge well prepared for the future.




Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing


Book Description

Standards, Quality Control and Measurement Sciences in 3D Printing and Additive Manufacturing addresses the critical elements of the standards and measurement sciences in 3D printing to help readers design and create safe, reliable products of high quality. With 3D printing revolutionizing the process of manufacturing in a wide range of products, the book takes key features into account, such as design and fabrication and the current state and future potentials and opportunities in the field. In addition, the book provides an in-depth analysis on the importance of standards and measurement sciences. With self-test exercises at the end of each chapter, readers can improve their ability to take up challenges and become proficient in a number of topics related to 3D printing, including software usage, materials specification and benchmarking. - Helps the reader understand the quality framework tailored for 3D printing processes - Explains data format and process control in 3D printing - Provides an overview of different materials and characterization methods - Covers benchmarking and metrology for 3D printing




An Assessment of the National Institute of Standards and Technology Materials Science and Engineering Laboratory


Book Description

The Materials Science and Engineering Laboratory (MSEL) of the National Institute of Standards and Technology (NIST) works with industry, standards bodies, universities, and other government laboratories to improve the nation's measurements and standards infrastructure for materials. A panel of experts appointed by the National Research Council (NRC) assessed the four divisions of MSEL, by visiting these divisions and reviewing their activities.




Selecting Instructional Materials


Book Description

The National Science Education Standards set broad content goals for teaching grades K-12. For science teaching programs to achieve these goalsâ€"indeed, for science teaching to be most effectiveâ€"teachers and students need textbooks, lab kits, videos, and other materials that are clear, accurate, and help students achieve the goals set by the standards. Selecting Instructional Materials provides a rigorously field-tested procedure to help education decisionmakers evaluate and choose materials for the science classroom. The recommended procedure is unique, adaptable to local needs, and realistic given the time and money limitations typical to school districts. This volume includes a guide outlining the entire process for school district facilitators, and provides review instruments for each step. It critically reviews the current selection process for science teaching materialsâ€"in the 20 states where the state board of education sets forth a recommended list and in the 30 states where materials are selected entirely by local decisionmakers. Selecting Instructional Materials explores how purchasing decisions are influenced by parent attitudes, political considerations, and the marketing skills of those who produce and sell science teaching materials. It will be indispensable to state and local education decisionmakers, science program administrators and teachers, and science education advocates.




Materials and Process Specifications and Standards


Book Description




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Product Standard


Book Description