Materials Science and Technology: Strained-Layer Superlattices


Book Description

The following blurb to be used for the AP Report and ATI only as both volumes will not appear together there.****Strained-layer superlattices have been developed as an important new form of semiconducting material with applications in integrated electro-optics and electronics. Edited by a pioneer in the field, Thomas Pearsall, this volume offers a comprehensive discussion of strained-layer superlattices and focuses on fabrication technology and applications of the material. This volume combines with Volume 32, Strained-Layer Superlattices: Physics, in this series to cover a broad spectrum of topics, including molecular beam epitaxy, quantum wells and superlattices, strain-effects in semiconductors, optical and electrical properties of semiconductors, and semiconductor devices.****The following previously approved blurb is to be used in all other direct mail and advertising as both volumes will be promoted together.****Strained-layer superlattices have been developed as an important new form of semiconducting material with applications in integrated electro-optics and electronics. Edited by a pioneer in the field, Thomas Pearsall, this two-volume survey offers a comprehensive discussion of the physics of strained-layer superlattices (Volume 32), as well as detailing fabrication technology and applications of the material (Volume 33). Although each volume is edited to stand alone, the two books combine to cover a broad spectrum of topics, including molecular beam epitaxy, quantum wells and superlattices, strain-effects in semiconductors, optical and electrical properties of semiconductors, and semiconductor devices.




Semiconductors and Semimetals


Book Description




Quantum Efficiency in Complex Systems, Part II: From Molecular Aggregates to Organic Solar Cells


Book Description

Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. - Written and edited by internationally renowned experts - Relevant to a wide readership: physicists, chemists, materials scientists, and device engineers in academia, scientific laboratories and modern industry




2D Materials


Book Description

2D Materials contains the latest information on the current frontier of nanotechnology, the thinnest form of materials to ever occur in nature. A little over 10 years ago, this was a completely unknown area, not thought to exist. However, since then, graphene has been isolated and acclaimed, and a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties has been created. This book is ideal for a variety of readers, including those seeking a high-level overview or a very detailed and critical analysis. No nanotechnologist can currently overlook this new class of materials. - Presents one of the first detailed books on this subject of nanotechnology - Contains contributions from a great line-up of authoritative contributors that bring together theory and experiments - Ideal for a variety of readers, including those seeking a high-level overview or a very detailed and critical analysis




SiC Materials and Devices


Book Description

This volume addresses the subject of materials science, specifically the materials aspects, device applications, and fabricating technology of SiC.




Nanostructured Systems


Book Description

This is the first available volume to consolidate prominent topics in the emerging field of nanostructured systems. Recent technological advancements have led to a new era of nanostructure physics, allowing for the fabrication of nanostructures whose behavior is dominated by quantum interference effects. This new capability has enthused the experimentalist and theorist alike. Innumerable possibilities have now opened up for physical exploration and device technology on the nanoscale. This book, with contributions from five pioneering researchers, will allow the expert and novice alike to explore a fascinating new field.Provides a state-of-the-art review of quantum-scale artificially nanostructured electronic systemsIncludes contributions by world-known experts in the fieldOpens the field to the non-expert with a concise introductionFeatures discussions of:Low-dimensional condensed matter physicsProperties of nanostructured, ultrasmall electronic systemsMesoscopic physics and quantum transportPhysics of 2D electronic systems













Concise Encyclopedia of Semiconducting Materials & Related Technologies


Book Description

The development of electronic materials and particularly advances in semiconductor technology have played a central role in the electronics revolution by allowing the production of increasingly cheap and powerful computing equipment and advanced telecommunications devices. This Concise Encyclopedia, which incorporates relevant articles from the acclaimed Encyclopedia of Materials Science and Engineering as well as newly commissioned articles, emphasizes the materials aspects of semiconductors and the technologies important in solid-state electronics. Growth of bulk crystals and epitaxial layers are discussed in the volume and coverage is included of defects and their effects on device behavior. Metallization and passivation issues are also covered. Over 100 alphabetically arranged articles, written by world experts in the field, are each intended to serve as the first source of information on a particular aspect of electronic materials. The volume is extensively illustrated with photographs, diagrams and tables. A bibliography is provided at the end of each article to guide the reader to recent literature. A comprehensive system of cross-references, a three-level subject index and an alphabetical list of articles are included to aid readers in the abstraction of information.