Materials Science to Combat COVID-19


Book Description

This book covers the application of emerging materials to combat coronavirus. It discusses various physicochemical and biomedical characteristics of 2D materials, such as graphene, MXenes, and their various other derivatives, followed by proposal of how such materials can be used to design and develop several systems capable of fighting infectious diseases like coronavirus. It also covers fundamental and product developments based on MXene and graphene-based materials using emerging 3D printing process and other pertinent aspects. Features: Focusses on COVID-19 from cross-disciplinary approach, especially biophysical management of the virus. Discusses emerging 2D materials such as MXene and graphene to combat coronavirus. Reviews development of PPEs, sterilizers, foams, antimicrobial surfaces, biosensors from materials science perspective. Explores pertinent fundamental mechanisms to develop structure–property relationships. Examines cytotoxicity and biocompatibility of the discussed 2D materials. This book is aimed at researchers and graduate students in biotechnology, biomedical engineering, chemical engineering, and materials science.




Biomedical Innovations to Combat COVID-19


Book Description

Biomedical Innovations to Combat COVID-19 provides an updated overview on the development of vaccines, antiviral drugs and nanomaterials, and diagnostic methods for the fight against COVID-19. Perspectives on such technologies are identified, discussed, and enriched with figures for easy understanding and applicability. Furthermore, it contains basic aspects of virology, immunology, and antiviral drugs that are needed to fully appreciate these innovations. This book is split into four sections: introduction, presenting basic virologic and epidemiological aspects of COVID-19; vaccines against COVID-19, discussing their different types and applications used to develop them; diagnostic approaches for SARS-CoV-2, encompassing advanced sensing and microfluidic-based biosensors; and drug development and delivery, where antivirals based on nanomaterials or drugs are presented. It is a valuable source for virologists, biotechnologists, and members of biomedical field interested in learning more about how novel technologies can be applied to fasten the eradication of the COVID-19 and similar pandemics. - Presents updated literature coverage summarizing the most relevant information on COVID-19 - Written by experts from diverse scientific domains in order to provide readers with a thorough view on the subject - Encompasses tables, figures and information trees especially developed for the book in order to condense and highlight key points for quick reference




Data Science for COVID-19


Book Description

Data Science for COVID-19, Volume 2: Societal and Medical Perspectives presents the most current and leading-edge research into the applications of a variety of data science techniques for the detection, mitigation, treatment and elimination of the COVID-19 virus. At this point, Cognitive Data Science is the most powerful tool for researchers to fight COVID-19. Thanks to instant data-analysis and predictive techniques, including Artificial Intelligence, Machine Learning, Deep Learning, Data Mining, and computational modeling for processing large amounts of data, recognizing patterns, modeling new techniques, and improving both research and treatment outcomes is now possible. - Provides a leading-edge survey of Data Science techniques and methods for research, mitigation and the treatment of the COVID-19 virus - Integrates various Data Science techniques to provide a resource for COVID-19 researchers and clinicians around the world, including the wide variety of impacts the virus is having on societies and medical practice - Presents insights into innovative, data-oriented modeling and predictive techniques from COVID-19 researchers around the world, including geoprocessing and tracking, lab data analysis, and theoretical views on a variety of technical applications - Includes real-world feedback and user experiences from physicians and medical staff from around the world for medical treatment perspectives, public safety policies and impacts, sociological and psychological perspectives, the effects of COVID-19 in agriculture, economies, and education, and insights on future pandemics




Studies to Combat COVID-19 using Science and Engineering


Book Description

This unique book provides excellent examples of ongoing, leading-edge research related to viruses, especially COVID-19. It is written from the viewpoint of various scientific fields including materials science. It introduces and describes viruses (submicroscopic infectious agents that replicate inside the living cells of an organism), various infections caused by viruses (human to human, human to other organisms to humans, humans to materials to humans, etc.), not only from the viewpoint of medical research but also from other scientific disciplines. A major focus of the book is the COVID-19 virus. Highlighted topics include the evolution of COVID-19, transmission of virus particles through the air, virus spread through various materials, detection of the virus by testing wastewater, the development and testing of vaccines and therapeutic drugs, and the preparation for future viruses and pandemics. This includes reform in funeral services to properly and safely accommodate very large numbers of bodies in a pandemic, like those seen in New York City when it was the epicenter for the virus in the United States. This book serves as an excellent and very informative guide (practical book) for engineers and researchers of various backgrounds and as a great academic textbook.




Data Science for COVID-19 Volume 1


Book Description

On top of title page: "Biomedical engineering."




Assessment of Polymeric Materials for Biomedical Applications


Book Description

This book initiates with an introduction to polymeric materials, followed by various classifications and properties of polymeric implant material including various development methods of polymeric materials and their characterization techniques. An overview of various toxicology assessments of polymeric materials and polymeric materials for drug delivery system is also included. Design and analysis of polymeric materials-based components using Ansys software along with polymeric materials for additively manufactured artificial organs are also discussed. Features: Addresses assessment of polymeric materials in biomedical sciences, including classification, properties, and development of polymeric implants. Covers various topics in the field of tissue regeneration. Discusses biocompatibility, toxicity, and biodegradation of polymeric materials. Explores wide-scale characterization to study the effect of inclusion size on the mechanical properties of polymeric materials. Reviews limitations and future directions on polymeric material with emphasis on biocompatibility. This book is aimed at graduate students and researchers in biomaterials, biomedical engineering, composites, and polymers.




Wastewater Treatment with the Fenton Process


Book Description

The presence of refractory organic compounds in wastewater is a global problem. Advanced oxidation processes, in general, and the Fenton oxidation process are alternative technologies for wastewater and water treatment. This book gives an overview of Fenton process principles, explains the main factors influencing this technology, includes applications, kinetic and thermodynamic calculations and presents a strong overview on the heterogeneous catalytic approach. It demonstrates that the iron-based heterogeneous Fenton process, including nanoparticles, a new complex solution, is highly efficient, environmentally friendly and can be suitable for wastewater treatment and industrial wastewater. FEATURES Describes in detail the heterogeneous Fenton process and process applications Analyzes the advantages and disadvantages of different catalysts available and their suitability to specific processes Provides economic analysis of the Fenton process in a ready-to-use package for industrial practitioners for adaptation into already existing industrially viable technologies Promotes a modern solution to the problem of degradation of hazardous compounds through ecological and environmentally friendly processes and the use of a catalyst that can be recycled Explains highly complex data in an understandable and reader-friendly way Intended for professionals, researchers, upper-level undergraduate and graduate students in environmental engineering, materials science, chemistry, and those who work in wastewater management. Chapters 3, 4, and 9 of this book are freely available as a downloadable Open Access PDF at http://www.taylorfrancis.com under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license.




Nanomaterials for Sustainable Energy Applications


Book Description

This book provides a detailed overview of different devices and nanomaterials for energy storage applications. The application of each nanomaterial is discussed for fuel cells, metal–air batteries, supercapacitors, solar cells, regenerative fuel cells, hydrogen energy, batteries, and redox flow batteries to understand the reaction process and material performance improvement for energy storage devices. In addition, major challenges, case studies, historical, and future perspective are summarized. Features: Summarizes state-of-the-art nanomaterials for energy storage and conversion applications Comprehensive coverage of a wide range of nanomaterials, including synthesis and characterization Details different energy storage devices, construction, working principles, and major challenges Covers specific reactions, nanomaterials, and nanocomposites via audio–video slides/short films Includes case studies pertaining to development of energy storage devices and major challenges This book is aimed at researchers and graduate students in chemical engineering, chemical sciences, nanomaterials, and energy engineering/conversion.




Polymer Processing


Book Description

This book covers polymer 3D printing through basics of technique and its implementation. It begins with the discussion on fundamentals of new-age printing, know-how of technology, methodology of printing, and product design perspectives. It includes aspects of CAD along with uses of Slicer software, image analysis software and MATLAB® programming in 3D printing of polymers. It covers choice of polymers for printing subject to their structure–property relationship, troubleshooting during printing, and possible uses of waste plastics and other waste materials. Key Features Explores polymeric material printing and design Provides information on the potential for the transformation and manufacturing, reuse and recycling of polymeric material Includes comparison of 3D printing and injection moulding Discusses CAD design and pertinent scaling-up process related to polymers Offers basic strategies for improvement and troubleshooting of 3D printing This book is aimed at professionals and graduate students in polymer and mechanical engineering and materials science and engineering.




Two-Dimensional Nanomaterials for Fire-Safe Polymers


Book Description

This book provides an overview of the latest scientific developments and technological advances in two-dimensional (2D) nanomaterials for fire-safe polymers. It summarizes the preparation methods for diverse types of 2D nanomaterials and their polymer composites and reviews their flame-retardant properties, toxic gas and smoke emission during combustion, and inhibition strategies. Covers fundamental aspects like influence of size and dispersion of 2D nanomaterials to help readers develop efficient, multi-functional, and ecofriendly fire-safe polymer composites for a wide range of applications Discusses new-emerging 2D nanomaterials for fire-safe polymer applications, including MXenes, graphitic carbon nitride, boron nitride, and black phosphorus Introduces basic modes of flame retardant action of 2D nanomaterials, including smoke and toxic gas suppression, and the role of 2D nanomaterials in promoting char formation This book is suitable for both scholars and engineers in the fields of polymer science and engineering. It is also aimed at graduate students in chemistry, materials, and safety science and engineering.