Every Math Learner, Grades K-5


Book Description

Differentiation that shifts your instruction and boosts ALL student learning! Nationally recognized math differentiation expert Nanci Smith debunks the myths surrounding differentiated instruction, revealing a practical approach to real learning differences. Theory-lite and practice-heavy, this book provides a concrete and manageable framework for helping all students know, understand, and even enjoy doing mathematics. Busy K-5 mathematics educators learn to Provide practical structures for assessing how students learn and process mathematical concepts Design, implement, manage, and formatively assess and respond to learning in a standards-aligned differentiated classroom; and Adjust current instructional materials to better meet students' needs Includes classroom videos and a companion website.




Numeracy for All Learners


Book Description

Numeracy for All Learners is a wide-ranging overview of how Math Recovery® theory, pedagogy, and tools can be applied meaningfully to special education to support learners with a wide range of educational needs. It builds on the first six books in the Math Recovery series and presents knowledge, resources, and examples for teachers working with students with special needs from Pre-K through secondary school. Key topics include: dyscalculia, what contemporary neuroscience tells us about mathematical learning, and differentiating assessment and instruction effectively to meet the needs of all students in an equitable framework.




My Kids Can


Book Description

Teaching mathematics to a range of learners has always been challenging. With the widespread use of inclusion and RTI, having a variety of effective teaching options for students who struggle is more important than ever. In My Kids Can, you'll get instructional strategies that allow all struggling math learners to move along the path toward grade-level competency. In My Kids Can teachers share successful ways to work with struggling students. Their instruction is aligned with the NCTM standards and guided by five powerful core principles. Make mathematical thinking explicit. Link assessment and teaching. Build understanding through talk. Expect students to take responsibility for their own learning and support them as they do. Work collaboratively with special education staff to plan effective instruction. These teachers describe how they use whole-group, small-group, and individual instruction as well as other strategies that hold kids to high expectations while scaffolding content and processes across the math curriculum. In addition, an accompanying DVD presents classroom footage of their teaching and includes the language, dialogue, and teaching moves you'll adapt for success with your students. The DVD also contains teacher interviews that answer difficult questions of practice. Best of all, with professional learning questions and video analyses, My Kids Can is great for individuals, teacher study groups, staff development, and preservice courses. Help every child grow as a mathematician. Trust your fellow teachers for instruction that works. Read My Kids Can and use its proven-effective strategies and its professional supports to build on your students' strengths and address their learning needs.




Visible Learning for Mathematics, Grades K-12


Book Description

Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.




Teaching Math to Multilingual Students, Grades K-8


Book Description

Using strengths-based approaches to support development in mathematics It’s time to re-imagine what’s possible and celebrate the brilliance multilingual learners bring to today’s classrooms. Innovative teaching strategies can position these learners as leaders in mathematics. Yet, as the number of multilingual learners in North American schools grows, many teachers have not had opportunities to gain the competencies required to teach these learners effectively, especially in disciplines such as mathematics. Multilingual learners—historically called English Language Learners—are expected to interpret the meaning of problems, analyze, make conjectures, evaluate their progress, and discuss and understand their own approaches and the approaches of their peers in mathematics classrooms. Thus, language plays a vital role in mathematics learning, and demonstrating these competencies in a second (or third) language is a challenging endeavor. Based on best practices and the authors’ years of research, this guide offers practical approaches that equip grades K-8 teachers to draw on the strengths of multilingual learners, partner with their families, and position these learners for success. Readers will find: • A focus on multilingual students as leaders • A strength-based approach that draws on students’ life experiences and cultural backgrounds • An emphasis on maintaining high expectations for learners’ capacity for mastering rigorous content • Strategies for representing concepts in different formats • Stop and Think questions throughout and reflection questions at the end of each chapter • Try It! Implementation activities, student work examples, and classroom transcripts With case studies and activities that provide a solid foundation for teachers’ growth and exploration, this groundbreaking book will help teachers and teacher educators engage in meaningful, humanized mathematics instruction.




Teaching Math at a Distance, Grades K-12


Book Description

Make Rich Math Instruction Come to Life Online In an age when distance learning has become part of the "new normal," educators know that rich remote math teaching involves more than direct instruction, online videos, and endless practice problems on virtual worksheets. Using both personal experience and those of teachers in real K-12 online classrooms, distance learning mathematics veteran Theresa Wills translates all we know about research-based, equitable, rigorous face-to-face mathematics instruction into an online venue. This powerful guide equips math teachers to: Build students’ agency, identity, and strong math communities Promote mathematical thinking, collaboration, and discourse Incorporate rich mathematics tasks and assign meaningful homework and practice Facilitate engaging online math instruction using virtual manipulatives and other concrete learning tools Recognize and address equity and inclusion challenges associated with distance learning Assess mathematics learning from a distance With examples across the grades, links to tutorials and templates, and space to reflect and plan, Teaching Math at a Distance offers the support, clarity, and inspiration needed to guide teachers through teaching math remotely without sacrificing deep learning and academic growth.




Developing Number Knowledge


Book Description

Following the great success of the earlier books, this fourth book in the Mathematics Recovery series equips teachers with detailed pedagogical knowledge and resources for teaching number to 7 to 11-year olds. Drawing on extensive programs of research, curriculum development, and teacher development, the book offers a coherent, up-to-date approach emphasising computational fluency and the progressive development of students′ mathematical sophistication. The book is organized in key domains of number instruction, including structuring numbers 1 to 20, knowledge of number words and numerals, conceptual place value, mental computation, written computation methods, fractions, and early algebraic reasoning. Features include: fine-grained progressions of instruction within each domain; detailed descriptions of students′ strategies and difficulties; assessment tasks with notes on students′ responses; classroom-ready instructional activities; This book is designed for classroom and intervention teachers, special education teachers and classroom assistants. The book is an invaluable resource for mathematics advisors and coaches, learning support staff, numeracy consultants, curriculum developers, teacher educators and researchers.




Making Sense of Mathematics for Teaching High School


Book Description

Develop a deep understanding of mathematics by grasping the context and purpose behind various strategies. This user-friendly resource presents high school teachers with a logical progression of pedagogical actions, classroom norms, and collaborative teacher team efforts to increase their knowledge and improve mathematics instruction. Explore strategies and techniques to effectively learn and teach significant mathematics concepts and provide all students with the precise, accurate information they need to achieve academic success. Combine student understanding of functions and algebraic concepts so that they can better decipher the world. Benefits Dig deep into mathematical modeling and reasoning to improve as both a learner and teacher of mathematics. Explore how to develop, select, or modify mathematics tasks in order to balance cognitive demand and engage students. Discover the three important norms to uphold in all mathematics classrooms. Learn to apply the tasks, questioning, and evidence (TQE) process to ensure mathematics instruction is focused, coherent, and rigorous. Gain clarity about the most productive progression of mathematical teaching and learning for high school. Watch short videos that show what classrooms that are developing mathematical understanding should look like. Contents Introduction Equations and Functions Structure of Equations Geometry Types of Functions Function Modeling Statistics and Probability Epilogue: Next Steps Appendix: Weight Loss Study Data References Index




Building Thinking Classrooms in Mathematics, Grades K-12


Book Description

A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.




Activating Math Talk


Book Description

Achieve High-Quality Mathematics Discourse With Purposeful Talk Techniques Many mathematics teachers agree that engaging students in high quality discourse is important for their conceptual learning, but successfully promoting such discourse in elementary classrooms—with attention to the needs of every learner—can be a challenge. Activating Math Talk tackles this challenge by bringing practical, math-specific, productive discourse techniques that are applicable to any lesson or curriculum. Framed around 11 student-centered discourse techniques, this research-based book connects purposeful instructional techniques to specific lesson goals and includes a focus on supporting emergent multilingual learners. You will be guided through each technique with Classroom examples of tasks and techniques spanning grades K–5 Reflection moments to help you consider how key ideas relate to your own instruction Classroom vignettes that illustrate the techniques in action and provide opportunities to analyze and prepare for your own implementation Group discussion questions for engaging with colleagues in your professional community Achieving high-quality mathematics discourse is within your reach using the clear-cut techniques that activates your math talk efforts to promote every student’s conceptual learning.




Recent Books