Mathematical Insights into Advanced Computer Graphics Techniques


Book Description

This book presents cutting-edge developments in the advanced mathematical theories utilized in computer graphics research – fluid simulation, realistic image synthesis, and texture, visualization and digital fabrication. A spin-off book from the International Symposium on Mathematical Progress in Expressive Image Synthesis in 2016 and 2017 (MEIS2016/2017) held in Fukuoka, Japan, it includes lecture notes and an expert introduction to the latest research presented at the symposium. The book offers an overview of the emerging interdisciplinary themes between computer graphics and driven mathematic theories, such as discrete differential geometry. Further, it highlights open problems in those themes, making it a valuable resource not only for researchers, but also for graduate students interested in computer graphics and mathematics.




Mathematics for Computer Graphics


Book Description

This is a concise and informal introductory book on the mathematical concepts that underpin computer graphics. The author, John Vince, makes the concepts easy to understand, enabling non-experts to come to terms with computer animation work. The book complements the author's other works and is written in the same accessible and easy-to-read style. It is also a useful reference book for programmers working in the field of computer graphics, virtual reality, computer animation, as well as students on digital media courses, and even mathematics courses.




Mathematical Elements for Computer Graphics


Book Description

This text is ideal for junior-, senior-, and graduate-level courses in computer graphics and computer-aided design taught in departments of mechanical and aeronautical engineering and computer science. It presents in a unified manner an introduction to the mathematical theory underlying computer graphic applications. It covers topics of keen interest to students in engineering and computer science: transformations, projections, 2-D and 3-D curve definition schemes, and surface definitions. It also includes techniques, such as B-splines, which are incorporated as part of the software in advanced engineering workstations. A basic knowledge of vector and matrix algebra and calculus is required.




3D Computer Graphics


Book Description

This textbook, first published in 2003, emphasises the fundamentals and the mathematics underlying computer graphics. The minimal prerequisites, a basic knowledge of calculus and vectors plus some programming experience in C or C++, make the book suitable for self study or for use as an advanced undergraduate or introductory graduate text. The author gives a thorough treatment of transformations and viewing, lighting and shading models, interpolation and averaging, Bézier curves and B-splines, ray tracing and radiosity, and intersection testing with rays. Additional topics, covered in less depth, include texture mapping and colour theory. The book covers some aspects of animation, including quaternions, orientation, and inverse kinematics, and includes source code for a Ray Tracing software package. The book is intended for use along with any OpenGL programming book, but the crucial features of OpenGL are briefly covered to help readers get up to speed. Accompanying software is available freely from the book's web site.




Insight Through Computer Graphics - Proceedings Of The Computer Graphics International 1994 (Cg194)


Book Description

Computer graphics has been advancing to the level of creating completely new worlds inside computers. Through such computer graphics worlds, we human beings now have far improved insight into wide varieties of real worlds starting from fairly simple but exact worlds of curves and surfaces and reaching to complex human worlds. This volume presents a quite concrete and advanced methods, techniques, modeling and mathematical backgrounds which are indispensable in order to carry out end researches to increase insight through computer graphics.




Polyhedral and Algebraic Methods in Computational Geometry


Book Description

Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.




Fundamentals of Computer Graphics


Book Description

With contributions by Michael Ashikhmin, Michael Gleicher, Naty Hoffman, Garrett Johnson, Tamara Munzner, Erik Reinhard, Kelvin Sung, William B. Thompson, Peter Willemsen, Brian Wyvill. The third edition of this widely adopted text gives students a comprehensive, fundamental introduction to computer graphics. The authors present the mathematical foundations of computer graphics with a focus on geometric intuition, allowing the programmer to understand and apply those foundations to the development of efficient code. New in this edition: Four new contributed chapters, written by experts in their fields: Implicit Modeling, Computer Graphics in Games, Color, Visualization, including information visualization Revised and updated material on the graphics pipeline, reflecting a modern viewpoint organized around programmable shading. Expanded treatment of viewing that improves clarity and consistency while unifying viewing in ray tracing and rasterization. Improved and expanded coverage of triangle meshes and mesh data structures. A new organization for the early chapters, which concentrates foundational material at the beginning to increase teaching flexibility.




3D Game Engine Design


Book Description

The first edition of 3D Game Engine Design was an international bestseller that sold over 17,000 copies and became an industry standard. In the six years since that book was published, graphics hardware has evolved enormously. Hardware can now be directly controlled through techniques such as shader programming, which requires an entirely new thought process of a programmer. In a way that no other book can do, this new edition shows step by step how to make a shader-based graphics engine and how to tame this new technology. Much new material has been added, including more than twice the coverage of the essential techniques of scene graph management, as well as new methods for managing memory usage in the new generation of game consoles and portable game players. There are expanded discussions of collision detection, collision avoidance, and physics—all challenging subjects for developers. The mathematics coverage is now focused towards the end of the book to separate it from the general discussion. As with the first edition, one of the most valuable features of this book is the inclusion of Wild Magic, a commercial quality game engine in source code that illustrates how to build a real-time rendering system from the lowest-level details all the way to a working game. Wild Magic Version 4 consists of over 300,000 lines of code that allows the results of programming experiments to be seen immediately. This new version of the engine is fully shader-based, runs on Windows XP, Mac OS X, and Linux, and is only available with the purchase of the book.




Graphics Modeling and Visualization in Science and Technology


Book Description

The book reports on a workshop on Graphics Modeling and Visualization in scientific, engineering and technical applications. Visualization is known as the key technology to control massive data sets and to achieve insight into these tera bytes of data. Graphics Modeling is the enabling technology for advanced interaction. The papers report on applied visualization or basic research in modeling and visualization. Applications - using commercial or experimental visualization tools - cover the following fields: engineering and design, environmental research, material science, computational sciences, fluid dynamics and algorithmic visualization.




Mathematical Cryptology for Computer Scientists and Mathematicians


Book Description

The author includes not only information about the most important advances in the field of cryptology of the past decade-such as the Data Encryption Standard (DES), public-key cryptology, and the RSA algorithm-but also the research results of the last three years: the Shamir, the Lagarias-Odlyzko, and the Brickell attacks on the Knapsack methods; the new Knapsack method using Galois fields by Chor and Rivest; and the recent analysis by Kaliski, Rivest, and Sherman of group-theoretic properties of the Data Encryption Standard (DES).