Mathematical Progress in Expressive Image Synthesis II


Book Description

The material included in this book provides selected presentations given at the international symposium MEIS2014. The book aims to provide a unique venue where various issues in computer graphics (CG) application fields are discussed by mathematicians as well as CG researchers and practitioners. The target audience is not limited to researchers in academia but also those in industries with a strong interest in digital media creation, scientific visualization and visual engineering.




Mathematical Progress in Expressive Image Synthesis III


Book Description

“Progress in Expressive Image Synthesis” (MEIS2015), was held in Fukuoka, Japan, September 25–27, 2015. The aim of the symposium was to provide a unique venue where various issues in computer graphics (CG) application fields could be discussed by mathematicians, CG researchers, and practitioners. Through the previous symposiums MEIS2013 and MEIS2014, mathematicians as well as CG researchers have recognized that CG is a specific and practical activity derived from mathematical theories. Issues found in CG broaden the field of mathematics and vice versa, and CG visualizes mathematical theories in an aesthetic manner. In this volume, the editors aim to provoke interdisciplinary research projects through the peer-reviewed papers and poster presentations at the this year’s symposium. This book captures interactions among mathematicians, CG researchers, and practitioners sharing important, state-of-the-art issues in graphics and visual perception. The book is suitable for all CG researchers seeking open problem areas and especially for those entering the field who have not yet selected a research direction.




Mathematical Progress in Expressive Image Synthesis I


Book Description

This book presents revised versions of the best papers selected from the symposium “Mathematical Progress in Expressive Image Synthesis” (MEIS2013) held in Fukuoka, Japan, in 2013. The topics cover various areas of computer graphics (CG), such as surface deformation/editing, character animation, visual simulation of fluids, texture and sound synthesis and photorealistic rendering. From a mathematical point of view, the book also presents papers addressing discrete differential geometry, Lie theory, computational fluid dynamics, function interpolation and learning theory. This book showcases the latest joint efforts between mathematicians, CG researchers and practitioners exploring important issues in graphics and visual perception. The book provides a valuable resource for all computer graphics researchers seeking open problem areas, especially those now entering the field who have not yet selected a research direction.







A Mathematical Approach to Research Problems of Science and Technology


Book Description

This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.




Mathematical Software – ICMS 2016


Book Description

This book constitutes the proceedings of the 5th International Conference on Mathematical Software, ICMS 2015, held in Berlin, Germany, in July 2016. The 68 papers included in this volume were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections named: univalent foundations and proof assistants; software for mathematical reasoning and applications; algebraic and toric geometry; algebraic geometry in applications; software of polynomial systems; software for numerically solving polynomial systems; high-precision arithmetic, effective analysis, and special functions; mathematical optimization; interactive operation to scientific artwork and mathematical reasoning; information services for mathematics: software, services, models, and data; semDML: towards a semantic layer of a world digital mathematical library; miscellanea.




Mathematical Insights into Advanced Computer Graphics Techniques


Book Description

This book presents cutting-edge developments in the advanced mathematical theories utilized in computer graphics research – fluid simulation, realistic image synthesis, and texture, visualization and digital fabrication. A spin-off book from the International Symposium on Mathematical Progress in Expressive Image Synthesis in 2016 and 2017 (MEIS2016/2017) held in Fukuoka, Japan, it includes lecture notes and an expert introduction to the latest research presented at the symposium. The book offers an overview of the emerging interdisciplinary themes between computer graphics and driven mathematic theories, such as discrete differential geometry. Further, it highlights open problems in those themes, making it a valuable resource not only for researchers, but also for graduate students interested in computer graphics and mathematics.




Combinatorial Image Analysis


Book Description

This volume constitutes the refereed proceedings of the 17th International Workshop on Combinatorial Image Analysis, IWCIA 2015, held in Kolkata, India, in November 2015. The 24 revised full papers and 2 invited papers presented were carefully reviewed and selected from numerous submissions. The workshop provides theoretical foundations and methods for solving problems from various areas of human practice. In contrast to traditional approaches to image analysis which implement continuous models, float arithmetic and rounding, combinatorial image analysis features discrete modelsusing integer arithmetic. The developed algorithms are based on studying combinatorial properties of classes of digital images, and often appear to be more efficient and accurate than those based on continuous models.




Mathematical Basics of Motion and Deformation in Computer Graphics


Book Description

This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation.




Mathematical Basics of Motion and Deformation in Computer Graphics, Second Edition


Book Description

This synthesis lecture presents an intuitive introduction to the mathematics of motion and deformation in computer graphics. Starting with familiar concepts in graphics, such as Euler angles, quaternions, and affine transformations, we illustrate that a mathematical theory behind these concepts enables us to develop the techniques for efficient/effective creation of computer animation. This book, therefore, serves as a good guidepost to mathematics (differential geometry and Lie theory) for students of geometric modeling and animation in computer graphics. Experienced developers and researchers will also benefit from this book, since it gives a comprehensive overview of mathematical approaches that are particularly useful in character modeling, deformation, and animation.