Mathematics and Mechanics - The Interplay


Book Description

Mathematics plays an important role in mechanics and other human endeavours. Validating examples in this first volume include, for instance: the connection between the golden ratio (the “divine proportion" used by Phidias and many other artists and enshrined in Leonardo's Vitruvian Man, shown on the front cover), and the Fibonacci spiral (observable in botany, e.g., in the placement of sunflower seeds); is the coast of Tuscany infinitely long?; the equal-time free fall of a feather and a lead ball in a vacuum; a simple diagnostic for changing your car's shocks; the Kepler laws of the planets; the dynamics of the Sun-Earth-Moon system; the tides' mechanism; the laws of friction and a wheel rolling down a partially icy slope; and many more. The style is colloquial. The emphasis is on intuition - lengthy but intuitive proofs are preferred to simple non-intuitive ones. The mathematical/mechanical sophistication gradually increases, making the volume widely accessible. Intuition is not at the expense of rigor. Except for grammar-school material, every statement that is later used is rigorously proven. Guidelines that facilitate the reading of the book are presented. The interplay between mathematics and mechanics is presented within a historical context, to show that often mechanics stimulated mathematical developments - Newton comes to mind. Sometimes mathematics was introduced independently of its mechanics applications, such as the absolute calculus for Einstein's general theory of relativity. Bio-sketches of all the scientists encountered are included and show that many of them dealt with both mathematics and mechanics.




Trends in Applications of Mathematics to Mechanics


Book Description

In many areas of mechanics the interplay between mathematics and physics is crucial for understanding not only underlying principles but also practical applications. This is particularly the case in hydrodynamics and elasticity. Over thirty articles in this volume discuss various aspects including perturbation methods and applications, instability, bifurcations and transition to chaos, multibody dynamics and control, mechanics and mathematics of non-classical materials, and new interactions of mathematics and mechanics. The book addresses scientists and engineers working in these areas including those interested in applied mathematical analysis.




A Mathematical Gift, III


Book Description

This book brings the beauty and fun of mathematics to the classroom. It offers serious mathematics in a lively, reader-friendly style. Included are exercises and many figures illustrating the main concepts. The first chapter talks about the theory of manifolds. It includes discussion of smoothness, differentiability, and analyticity, the idea of local coordinates and coordinate transformation, and a detailed explanation of the Whitney imbedding theorem (both in weak and in strong form).The second chapter discusses the notion of the area of a figure on the plane and the volume of a solid body in space. It includes the proof of the Bolyai-Gerwien theorem about scissors-congruent polynomials and Dehn's solution of the Third Hilbert Problem. This is the third volume originating from a series of lectures given at Kyoto University (Japan). It is suitable for classroom use for high school mathematics teachers and for undergraduate mathematics courses in the sciences and liberal arts. The first and second volumes are available as Volume 19 and Volume 20 in the AMS series, ""Mathematical World"".




A Mathematical Gift, I


Book Description

Three volumes originating from a series of lectures in mathematics given by professors of Kyoto University in Japan for high school students.




Mathematics Form and Function


Book Description

This book records my efforts over the past four years to capture in words a description of the form and function of Mathematics, as a background for the Philosophy of Mathematics. My efforts have been encouraged by lec tures that I have given at Heidelberg under the auspices of the Alexander von Humboldt Stiftung, at the University of Chicago, and at the University of Minnesota, the latter under the auspices of the Institute for Mathematics and Its Applications. Jean Benabou has carefully read the entire manuscript and has offered incisive comments. George Glauberman, Car los Kenig, Christopher Mulvey, R. Narasimhan, and Dieter Puppe have provided similar comments on chosen chapters. Fred Linton has pointed out places requiring a more exact choice of wording. Many conversations with George Mackey have given me important insights on the nature of Mathematics. I have had similar help from Alfred Aeppli, John Gray, Jay Goldman, Peter Johnstone, Bill Lawvere, and Roger Lyndon. Over the years, I have profited from discussions of general issues with my colleagues Felix Browder and Melvin Rothenberg. Ideas from Tammo Tom Dieck, Albrecht Dold, Richard Lashof, and Ib Madsen have assisted in my study of geometry. Jerry Bona and B.L. Foster have helped with my examina tion of mechanics. My observations about logic have been subject to con structive scrutiny by Gert Miiller, Marian Boykan Pour-El, Ted Slaman, R. Voreadou, Volker Weispfennig, and Hugh Woodin.




The Mechanics and Thermodynamics of Continuous Media


Book Description

From the reviews: "The book is excellent, and covers a very broad area (usually treated as separate topics) from a unified perspective. [...] It will be very useful for both mathematicians and physicists." EMS Newsletter




Random Trees


Book Description

The aim of this book is to provide a thorough introduction to various aspects of trees in random settings and a systematic treatment of the mathematical analysis techniques involved. It should serve as a reference book as well as a basis for future research.




Second Year Calculus


Book Description

Second Year Calculus: From Celestial Mechanics to Special Relativity covers multi-variable and vector calculus, emphasizing the historical physical problems which gave rise to the concepts of calculus. The book guides us from the birth of the mechanized view of the world in Isaac Newton's Mathematical Principles of Natural Philosophy in which mathematics becomes the ultimate tool for modelling physical reality, to the dawn of a radically new and often counter-intuitive age in Albert Einstein's Special Theory of Relativity in which it is the mathematical model which suggests new aspects of that reality. The development of this process is discussed from the modern viewpoint of differential forms. Using this concept, the student learns to compute orbits and rocket trajectories, model flows and force fields, and derive the laws of electricity and magnetism. These exercises and observations of mathematical symmetry enable the student to better understand the interaction of physics and mathematics.




Production Factor Mathematics


Book Description

Mathematics as a production factor or driving force for innovation? Those, who want to know and understand why mathematics is deeply involved in the design of products, the layout of production processes and supply chains will find this book an indispensable and rich source. Describing the interplay between mathematical and engineering sciences the book focusses on questions like How can mathematics improve to the improvement of technological processes and products? What is happening already? Where are the deficits? What can we expect for the future? 19 articles written by mixed teams of authors of engineering, industry and mathematics offer a fascinating insight of the interaction between mathematics and engineering.




A Comprehensible Universe


Book Description

Why is our world comprehensible? This question seems so trivial that few people have dared to ask it. In this book we explore the deep roots of the mystery of rationality. The inquiry into the rationality of the world began over two-and-a-half-thousand years ago, when a few courageous people tried to understand the world with the help of reason alone, rejecting the comforting fabric of myth and legend. After many philosophical and theological adventures the Greek concept of rationality laid the foundations of a revolutionary way of thinking: the scientific method, which transformed the world. But looking at the newest fruits of the world's rationality - relativity theory, quantum mechanics, the unification of physics, quantum gravity - the question arises: what are the limits of the scientific method? The principal tenet of rationality is that you should never stop asking questions until everything has been answered ... "A Comprehensible Universe is a thoughtful book by two authors who have professional expertise in physics and astronomy and also in theology. They are exceptionally well informed about the history of the relation between science and theology, and they maintain throughout their discussion a respect for empirical evidence and a dedication to rationality. Even though I do not agree with all of their conclusions on matters of great complexity I am impressed by the fairness of their argumentation." Abner Shimony, Professor Emeritus of Philosophy and Physics, Boston University