Mathematical Modeling in Nutrition and the Health Sciences


Book Description

This volume is the proceedings of the 7th Mathematical Modeling in Experimental Nutrition Conference held at Penn State University July 29 until August 1, 2000. The book addresses the determination of optimal intakes of nutrients and food components to provide lifelong health and reduce incidence of disease. Mathematical modelling provides a means of rigorously defining the functions of a system and using a variety of conditions to stimulate responses. This volume presents the newest advances in modelling and related experimental techniques required to meet the new challenges currently facing nutrition and biological science.




Fractional Calculus in Medical and Health Science


Book Description

This book covers applications of fractional calculus used for medical and health science. It offers a collection of research articles built into chapters on classical and modern dynamical systems formulated by fractional differential equations describing human diseases and how to control them. The mathematical results included in the book will be helpful to mathematicians and doctors by enabling them to explain real-life problems accurately. The book will also offer case studies of real-life situations with an emphasis on describing the mathematical results and showing how to apply the results to medical and health science, and at the same time highlighting modeling strategies. The book will be useful to graduate level students, educators and researchers interested in mathematics and medical science.




Mathematical Models in Medical and Health Science


Book Description

A unique assemblage of cutting-edge research on mathematical models in biology and medicine. This book is composed of refereed and carefully edited research articles derived from the Conference on Mathematical Models in Medical and Health Sciences, held at Vanderbilt University in conjunction with the thirteenth annual Shanks Lectures Series (May 1997).




Mathematics in Medicine and the Life Sciences


Book Description

The aim of this book is to introduce the subject of mathematical modeling in the life sciences. It is intended for students of mathematics, the physical sciences, and engineering who are curious about biology. Additionally, it will be useful to students of the life sciences and medicine who are unsatisfied with mere description and who seek an understanding of biological mechanism and dynamics through the use of mathematics. The book will be particularly useful to premedical students, because it will introduce them not only to a collection of mathematical methods but also to an assortment of phenomena involving genetics, epidemics, and the physiology of the heart, lung, and kidney. Because of its introductory character, mathematical prerequisites are kept to a minimum; they involve only what is usually covered in the first semester of a calculus sequence. The authors have drawn on their extensive experience as modelers to select examples which are simple enough to be understood at this elementary level and yet realistic enough to capture the essence of significant biological phenomena drawn from the areas of population dynamics and physiology. Because the models presented are realistic, the book can serve not only as an introduction to mathematical methods but also as a mathematical introduction to the biological material itself. For the student, who enjoys mathematics, such an introduction will be far more stimulating and satisfying than the purely descriptive approach that is traditional in the biological sciences.




Basic Math for Nursing and Allied Health


Book Description

Don't let your fear of math hold you back from a rewarding career in nursing or allied health! Basic Math for Nursing and Allied Health uses an easy-to-understand building-block approach designed to teach you how to correlate basic math concepts with everyday activities and eventually master the more complex calculations and formulas used by nursing and allied health professionals. This unique text walks you through essential math topics from Arabic and Roman numerals, addition, subtraction, multiplication, division, fractions, decimals, percentage, ratios and proportions, to conversion factors between household and metric measurements. Case studies used throughout the book not only demonstrate the mathematical concepts related to everyday activities and events, but also show you how to effectively use case studies to master the art of interpreting story problems. Basic Math for Nursing and Allied Health is written by an author team with extensive experience in many different healthcare fields including: pharmacy technology, medical assisting, nursing, emergency medical technology, anesthesia technology, patient care technology, and laboratory technology, as well as allied health instruction and education. Powerful learning aids help you understand and retain key concepts: "Recipes for Success" case study scenarios show how mathematical concepts and formulas can be applied to real-life situations "Manual Math" tips and reminder boxes reinforce your confidence and knowledge Key Terms provides definitions of must-know words and phrases Chapter Openers and Chapter Summaries pinpoint must-know takeaways of each chapter Practice equations after each concept sharpen your math skills End-of-Chapter practice tests help you decide whether you should progress to the next chapter Comprehensive review and final exam pinpoint your strengths and weaknesses




Statistics in the Health Sciences


Book Description

"This very informative book introduces classical and novel statistical methods that can be used by theoretical and applied biostatisticians to develop efficient solutions for real-world problems encountered in clinical trials and epidemiological studies. The authors provide a detailed discussion of methodological and applied issues in parametric, semi-parametric and nonparametric approaches, including computationally extensive data-driven techniques, such as empirical likelihood, sequential procedures, and bootstrap methods. Many of these techniques are implemented using popular software such as R and SAS."— Vlad Dragalin, Professor, Johnson and Johnson, Spring House, PA "It is always a pleasure to come across a new book that covers nearly all facets of a branch of science one thought was so broad, so diverse, and so dynamic that no single book could possibly hope to capture all of the fundamentals as well as directions of the field. The topics within the book’s purview—fundamentals of measure-theoretic probability; parametric and non-parametric statistical inference; central limit theorems; basics of martingale theory; Monte Carlo methods; sequential analysis; sequential change-point detection—are all covered with inspiring clarity and precision. The authors are also very thorough and avail themselves of the most recent scholarship. They provide a detailed account of the state of the art, and bring together results that were previously scattered across disparate disciplines. This makes the book more than just a textbook: it is a panoramic companion to the field of Biostatistics. The book is self-contained, and the concise but careful exposition of material makes it accessible to a wide audience. This is appealing to graduate students interested in getting into the field, and also to professors looking to design a course on the subject." — Aleksey S. Polunchenko, Department of Mathematical Sciences, State University of New York at Binghamton This book should be appropriate for use both as a text and as a reference. This book delivers a "ready-to-go" well-structured product to be employed in developing advanced courses. In this book the readers can find classical and new theoretical methods, open problems and new procedures. The book presents biostatistical results that are novel to the current set of books on the market and results that are even new with respect to the modern scientific literature. Several of these results can be found only in this book.




Mathematical Modelling in Health, Social and Applied Sciences


Book Description

This book discusses significant research findings in the field of mathematical modelling, with particular emphasis on important applied-sciences, health, and social issues. It includes topics such as model on viral immunology, stochastic models for the dynamics of influenza, model describing the transmission of dengue, model for human papillomavirus (HPV) infection, prostate cancer model, realization of economic growth by goal programming, modelling of grazing periodic solutions in discontinuous systems, modelling of predation system, fractional epidemiological model for computer viruses, and nonlinear ecological models. A unique addition in the proposed areas of research and education, this book is a valuable resource for graduate students, researchers and educators associated with the study of mathematical modelling of health, social and applied-sciences issues. Readers interested in applied mathematics should also find this book valuable.




Mathematics for Life Science and Medicine


Book Description

The purpose of this volume is to present and discuss the many rich properties of the dynamical systems that appear in life science and medicine. It provides a fascinating survey of the theory of dynamical systems in biology and medicine. Each chapter will serve to introduce students and scholars to the state-of-the-art in an exciting area, to present new results, and to inspire future contributions to mathematical modeling in life science and medicine.




Statistics for the Health Sciences


Book Description

Statistics for the Health Sciences is a highly readable and accessible textbook on understanding statistics for the health sciences, both conceptually and via the SPSS programme. The authors give clear explanations of the concepts underlying statistical analyses and descriptions of how these analyses are applied in health science research without complex maths formulae. The textbook takes students from the basics of research design, hypothesis testing and descriptive statistical techniques through to more advanced inferential statistical tests that health science students are likely to encounter. The strengths and weaknesses of different techniques are critically appraised throughout, and the authors emphasise how they may be used both in research and to inform best practice care in health settings. Exercises and tips throughout the book allow students to practice using SPSS. The companion website provides further practical experience of conducting statistical analyses. Features include: • multiple choice questions for both student and lecturer use • full Powerpoint slides for lecturers • practical exercises using SPSS • additional practical exercises using SAS and R This is an essential textbook for students studying beginner and intermediate level statistics across the health sciences.




Introductory Statistics for the Health Sciences


Book Description

Introductory Statistics for the Health Sciences takes students on a journey to a wilderness where science explores the unknown, providing students with a strong, practical foundation in statistics. Using a color format throughout, the book contains engaging figures that illustrate real data sets from published research. Examples come from many area