Mathematics from Leningrad to Austin


Book Description

This "Select a" contains approximately two thirds of the papers my 1932 to 1994. These papers are divided into four fields. father wrote from The first volume contains the papers on 1) Summability and Number Theory and 2) Interpolation. The second volume contains the fields 3) Real and Functional Analysis and 4) Approximation Theory. Each of these four groups of papers is introduced by a review of the contents and significance, respectively of the impact of these papers. The first volume contains, in addition, an autobiography, a complete list of publications, a list of doctoral students and four unpublished essays on mathematics in general: a) A report on the University of Leningrad b) On the work of the mathematical mind c) Proofs in Mathematics d) About Mathematical books. The report on the University of Leningrad, written in the late '40's, is a unique historical document which is still of current interest for several reasons. It is of interest for professional reasons since it contains a com plete description of a mathematics majors' curriculum through his entire course of studies. From it one can see both the changes and invariants of course material as well as the students' course load. Then one can also see the consequences of admittedly extreme political intervention in uni versity affairs. Today we use the term "politically correct", but in those times being politically correct was a matter of life and death.




Mathematics from Leningrad to Austin, Volume 2


Book Description

The works of George G. Lorentz, spanning more than 60 years, have played a significant role in the development and evolution of mathematical analysis. The papers presented in this volume represent a selection of his best works, along with commentary from his students and colleagues.










Grade Five Competition from the Leningrad Mathematical Olympiad


Book Description

This unique book presents mathematical competition problems primarily aimed at upper elementary school students, but are challenging for students at any age. These problems are drawn from the complete papers of the legendary Leningrad Mathematical Olympiads that were presented to the city’s Grade Five students. The period covered is between 1979 – the earliest year for which relevant records could be retrieved – and 1992, when the former Soviet Union was dissolved. The respective chapters reflect the famous four-step approach to problem solving developed by the great Hungarian mathematics educator Gyorgy Pólya. In Chapter One, the Grade Five Competition problems from the Leningrad Mathematical Olympiads from 1979 to 1992 are presented in chronological order. In Chapter Two, the 83 problems are loosely divided into 26 sets of three or four related problems, and an example is provided for each one. Chapter Three provides full solutions to all problems, while Chapter Four offers generalizations of the problems. This book can be used by any mathematically advanced student at the upper elementary school level. Teachers and organizers of outreach activities such as mathematical circles will also find this book useful. But the primary value of the book lies in the problems themselves, which were crafted by experts; therefore, anyone interested in problem solving will find this book a welcome addition to their library./div




Guide to Information Sources in Mathematics and Statistics


Book Description

This book is a reference for librarians, mathematicians, and statisticians involved in college and research level mathematics and statistics in the 21st century. We are in a time of transition in scholarly communications in mathematics, practices which have changed little for a hundred years are giving way to new modes of accessing information. Where journals, books, indexes and catalogs were once the physical representation of a good mathematics library, shelves have given way to computers, and users are often accessing information from remote places. Part I is a historical survey of the past 15 years tracking this huge transition in scholarly communications in mathematics. Part II of the book is the bibliography of resources recommended to support the disciplines of mathematics and statistics. These are grouped by type of material. Publication dates range from the 1800's onwards. Hundreds of electronic resources-some online, both dynamic and static, some in fixed media, are listed among the paper resources. Amazingly a majority of listed electronic resources are free.




Mathematical Methods for Knowledge Discovery and Data Mining


Book Description

"This book focuses on the mathematical models and methods that support most data mining applications and solution techniques, covering such topics as association rules; Bayesian methods; data visualization; kernel methods; neural networks; text, speech, and image recognition; an invaluable resource for scholars and practitioners in the fields of biomedicine, engineering, finance, manufacturing, marketing, performance measurement, and telecommunications"--Provided by publisher.




Tauberian Theory


Book Description

Tauberian theory compares summability methods for series and integrals, helps to decide when there is convergence, and provides asymptotic and remainder estimates. The author shows the development of the theory from the beginning and his expert commentary evokes the excitement surrounding the early results. He shows the fascination of the difficult Hardy-Littlewood theorems and of an unexpected simple proof, and extolls Wiener's breakthrough based on Fourier theory. There are the spectacular "high-indices" theorems and Karamata's "regular variation", which permeates probability theory. The author presents Gelfand's elegant algebraic treatment of Wiener theory and his own distributional approach. There is also a new unified theory for Borel and "circle" methods. The text describes many Tauberian ways to the prime number theorem. A large bibliography and a substantial index round out the book.




Foundations of Symmetric Spaces of Measurable Functions


Book Description

Key definitions and results in symmetric spaces, particularly Lp, Lorentz, Marcinkiewicz and Orlicz spaces are emphasized in this textbook. A comprehensive overview of the Lorentz, Marcinkiewicz and Orlicz spaces is presented based on concepts and results of symmetric spaces. Scientists and researchers will find the application of linear operators, ergodic theory, harmonic analysis and mathematical physics noteworthy and useful. This book is intended for graduate students and researchers in mathematics and may be used as a general reference for the theory of functions, measure theory, and functional analysis. This self-contained text is presented in four parts totaling seventeen chapters to correspond with a one-semester lecture course. Each of the four parts begins with an overview and is subsequently divided into chapters, each of which concludes with exercises and notes. A chapter called “Complements” is included at the end of the text as supplementary material to assist students with independent work.




Geometric Methods in Physics


Book Description

The Białowieża workshops on Geometric Methods in Physics are among the most important meetings in the field. Every year some 80 to 100 participants from both mathematics and physics join to discuss new developments and to interchange ideas. This volume contains contributions by selected speakers at the XXX meeting in 2011 as well as additional review articles and shows that the workshop remains at the cutting edge of ongoing research. The 2011 workshop focussed on the works of the late Felix A. Berezin (1931–1980) on the occasion of his 80th anniversary as well as on Bogdan Mielnik and Stanisław Lech Woronowicz on their 75th and 70th birthday, respectively. The groundbreaking work of Berezin is discussed from today’s perspective by presenting an overview of his ideas and their impact on further developments. He was, among other fields, active in representation theory, general concepts of quantization and coherent states, supersymmetry and supermanifolds. Another focus lies on the accomplishments of Bogdan Mielnik and Stanisław Lech Woronowicz. Mielnik’s geometric approach to the description of quantum mixed states, the method of quantum state manipulation and their important implications for quantum computing and quantum entanglement are discussed as well as the intricacies of the quantum time operator. Woronowicz’ fruitful notion of a compact quantum group and related topics are also addressed.