Mathematics is Beautiful


Book Description

In 17 chapters, this book attempts to deal with well-known and less well-known topics in mathematics. This is done in a vivid way and therefore the book contains a wealth of colour illustrations. It deals with stars and polygons, rectangles and circles, straight and curved lines, natural numbers, square numbers and much more. If you look at the illustrations, you will discover plenty of exciting and beautiful things in mathematics. The book offers a variety of suggestions to think about what is depicted and to experiment in order to make and check your own assumptions. For many topics, no (or only few) prerequisites from school lessons are needed. It is an important concern of the book that young people find their way to mathematics and that readers whose school days are some time ago discover new things. The numerous references to internet sites and further literature help in this respect. "Solutions" to the suggestions interspersed in the individual sections can be downloaded from the Springer website. The book was thus written for everyone who enjoys mathematics or who would like to understand why the book bears this title. It is also aimed at teachers who want to give their students additional or new motivation to learn. This book is a translation of the original German 2nd edition Mathematik ist schön by Heinz Klaus Strick, published by Springer-Verlag GmbH, DE, part of Springer Nature in 2019. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). In the subsequent editing, the author, with the friendly support of John O'Connor, St Andrews University, Scotland, tried to make it closer to a conventional translation. Still, the book may read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.




A Beautiful Math


Book Description

Millions have seen the movie and thousands have read the book but few have fully appreciated the mathematics developed by John Nash's beautiful mind. Today Nash's beautiful math has become a universal language for research in the social sciences and has infiltrated the realms of evolutionary biology, neuroscience, and even quantum physics. John Nash won the 1994 Nobel Prize in economics for pioneering research published in the 1950s on a new branch of mathematics known as game theory. At the time of Nash's early work, game theory was briefly popular among some mathematicians and Cold War analysts. But it remained obscure until the 1970s when evolutionary biologists began applying it to their work. In the 1980s economists began to embrace game theory. Since then it has found an ever expanding repertoire of applications among a wide range of scientific disciplines. Today neuroscientists peer into game players' brains, anthropologists play games with people from primitive cultures, biologists use games to explain the evolution of human language, and mathematicians exploit games to better understand social networks. A common thread connecting much of this research is its relevance to the ancient quest for a science of human social behavior, or a Code of Nature, in the spirit of the fictional science of psychohistory described in the famous Foundation novels by the late Isaac Asimov. In A Beautiful Math, acclaimed science writer Tom Siegfried describes how game theory links the life sciences, social sciences, and physical sciences in a way that may bring Asimov's dream closer to reality.




Beautiful Mathematics


Book Description

Mathematical ideas with aesthetic appeal for any mathematically minded person.




Algebra the Beautiful


Book Description

A mathematician reveals the hidden beauty, power, and—yes—fun of algebra What comes to mind when you think about algebra? For many of us, it’s memories of dull or frustrating classes in high school. Award-winning mathematics professor G. Arnell Williams is here to change that. Algebra the Beautiful is a journey into the heart of fundamental math that proves just how amazing this subject really is. Drawing on lessons from twenty-five years of teaching mathematics, Williams blends metaphor, history, and storytelling to uncover algebra’s hidden grandeur. Whether you’re a teacher looking to make math come alive for your students, a parent hoping to get your children engaged, a student trying to come to terms with a sometimes bewildering subject, or just a lover of mathematics, this book has something for you. With a passion that’s contagious, G. Arnell Williams shows how each of us can grasp the beauty and harmony of algebra.




Step into the World of Mathematics


Book Description

Modern life is increasingly relying on digital technology, which in turn runs on mathematics. However, this underlying math is hidden from us. That is mostly a good thing since we do not want to be solving equations and calculating fractions just to get things done in our everyday business. But the mathematical details do matter for anyone who wants to understand how stuff works, or wishes to create something new in the jungle of apps and algorithms. This book takes a look at the mathematical models behind weather forecasting, climate change prediction, artificial intelligence, medical imaging and computer graphics. The reader is expected to have only a curious mind; technical math skills are not needed for enjoying this text.




The Golden Ratio


Book Description

This enlightening and gorgeously illustrated book explores the beauty and mystery of the divine proportion in art, architecture, nature, and beyond. From the pyramids of Giza, to quasicrystals, to the proportions of the human face, the golden ratio has an infinite capacity to generate shapes with exquisite properties. Author Gary Meisner has spent decades researching the subject, investigating and collaborating with people across the globe in dozens of professions and walks of life. In The Golden Ratio, he shares his enlightening journey. Exploring the long history of this fascinating number, as well as new insights into its power and potential applications, The Golden Ratio invites you to take a new look at this timeless topic.




Explaining Beauty in Mathematics: An Aesthetic Theory of Mathematics


Book Description

This book develops a naturalistic aesthetic theory that accounts for aesthetic phenomena in mathematics in the same terms as it accounts for more traditional aesthetic phenomena. Building upon a view advanced by James McAllister, the assertion is that beauty in science does not confine itself to anecdotes or personal idiosyncrasies, but rather that it had played a role in shaping the development of science. Mathematicians often evaluate certain pieces of mathematics using words like beautiful, elegant, or even ugly. Such evaluations are prevalent, however, rigorous investigation of them, of mathematical beauty, is much less common. The volume integrates the basic elements of aesthetics, as it has been developed over the last 200 years, with recent findings in neuropsychology as well as a good knowledge of mathematics. The volume begins with a discussion of the reasons to interpret mathematical beauty in a literal or non-literal fashion, which also serves to survey historical and contemporary approaches to mathematical beauty. The author concludes that literal approaches are much more coherent and fruitful, however, much is yet to be done. In this respect two chapters are devoted to the revision and improvement of McAllister’s theory of the role of beauty in science. These antecedents are used as a foundation to formulate a naturalistic aesthetic theory. The central idea of the theory is that aesthetic phenomena should be seen as constituting a complex dynamical system which the author calls the aesthetic as process theory. The theory comprises explications of three central topics: aesthetic experience (in mathematics), aesthetic value and aesthetic judgment. The theory is applied in the final part of the volume and is used to account for the three most salient and often used aesthetic terms often used in mathematics: beautiful, elegant and ugly. This application of the theory serves to illustrate the theory in action, but also to further discuss and develop some details and to showcase the theory’s explanatory capabilities.




Beautiful, Simple, Exact, Crazy


Book Description

In this vibrant work, which is ideal for both teaching and learning, Apoorva Khare and Anna Lachowska explain the mathematics essential for understanding and appreciating our quantitative world. They show with examples that mathematics is a key tool in the creation and appreciation of art, music, and literature, not just science and technology. The book covers basic mathematical topics from logarithms to statistics, but the authors eschew mundane finance and probability problems. Instead, they explain how modular arithmetic helps keep our online transactions safe, how logarithms justify the twelve-tone scale commonly used in music, and how transmissions by deep space probes are similar to knights serving as messengers for their traveling prince. Ideal for coursework in introductory mathematics and requiring no knowledge of calculus, Khare and Lachowska's enlightening mathematics tour will appeal to a wide audience.




The Beauty of Doing Mathematics


Book Description

If someone told you that mathematics is quite beautiful, you might be surprised. But you should know that some people do mathematics all their lives, and create mathematics, just as a composer creates music. Usually, every time a mathematician solves a problem, this gives rise to many oth ers, new and just as beautiful as the one which was solved. Of course, often these problems are quite difficult, and as in other disciplines can be understood only by those who have studied the subject with some depth, and know the subject well. In 1981, Jean Brette, who is responsible for the Mathematics Section of the Palais de la Decouverte (Science Museum) in Paris, invited me to give a conference at the Palais. I had never given such a conference before, to a non-mathematical public. Here was a challenge: could I communicate to such a Saturday afternoon audience what it means to do mathematics, and why one does mathematics? By "mathematics" I mean pure mathematics. This doesn't mean that pure math is better than other types of math, but I and a number of others do pure mathematics, and it's about them that I am now concerned. Math has a bad reputation, stemming from the most elementary levels. The word is in fact used in many different contexts. First, I had to explain briefly these possible contexts, and the one with which I wanted to deal.




Mathematics and Art


Book Description

This is a cultural history of mathematics and art, from antiquity to the present. Mathematicians and artists have long been on a quest to understand the physical world they see before them and the abstract objects they know by thought alone. Taking readers on a tour of the practice of mathematics and the philosophical ideas that drive the discipline, Lynn Gamwell points out the important ways mathematical concepts have been expressed by artists. Sumptuous illustrations of artworks and cogent math diagrams are featured in Gamwell's comprehensive exploration. Gamwell begins by describing mathematics from antiquity to the Enlightenment, including Greek, Islamic, and Asian mathematics. Then focusing on modern culture, Gamwell traces mathematicians' search for the foundations of their science, such as David Hilbert's conception of mathematics as an arrangement of meaning-free signs, as well as artists' search for the essence of their craft, such as Aleksandr Rodchenko's monochrome paintings. She shows that self-reflection is inherent to the practice of both modern mathematics and art, and that this introspection points to a deep resonance between the two fields: Kurt Gödel posed questions about the nature of mathematics in the language of mathematics and Jasper Johns asked "What is art?" in the vocabulary of art. Throughout, Gamwell describes the personalities and cultural environments of a multitude of mathematicians and artists, from Gottlob Frege and Benoît Mandelbrot to Max Bill and Xu Bing. Mathematics and Art demonstrates how mathematical ideas are embodied in the visual arts and will enlighten all who are interested in the complex intellectual pursuits, personalities, and cultural settings that connect these vast disciplines.