Mathematics Of Multilevel Systems: Data, Scaling, Images, Signals, And Fractals


Book Description

This book presents the mathematics of wavelet theory and its applications in a broader sense, comprising entropy encoding, lifting scheme, matrix factorization, and fractals. It also encompasses image compression examples using wavelet transform and includes the principal component analysis which is a hot topic on data dimension reduction in machine learning.Readers will find equal coverage on the following three themes:The book entails a varied choice of diverse interdisciplinary themes. While the topics can be found in various parts of the pure and applied literature, this book fulfills the need for an accessible presentation which cuts across the fields.As the target audience is wide-ranging, a detailed and systematic discussion of issues involving infinite dimensions and Hilbert space is presented in later chapters on wavelets, transform theory and, entropy encoding and probability. For the problems addressed there, the case of infinite dimension will be more natural, and well-motivated.




Scaling, Fractals and Wavelets


Book Description

Scaling is a mathematical transformation that enlarges or diminishes objects. The technique is used in a variety of areas, including finance and image processing. This book is organized around the notions of scaling phenomena and scale invariance. The various stochastic models commonly used to describe scaling — self-similarity, long-range dependence and multi-fractals — are introduced. These models are compared and related to one another. Next, fractional integration, a mathematical tool closely related to the notion of scale invariance, is discussed, and stochastic processes with prescribed scaling properties (self-similar processes, locally self-similar processes, fractionally filtered processes, iterated function systems) are defined. A number of applications where the scaling paradigm proved fruitful are detailed: image processing, financial and stock market fluctuations, geophysics, scale relativity, and fractal time-space.




Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics


Book Description

This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.




Fractal Geometry in Digital Imaging


Book Description

This book is concerned with the theory and application of fractal geometry in digital imaging. Throughout the book, a series of new approaches to defining fractals are illustrated, such as the analysis of the fractal power spectrum and the use of fractional differentials. Several new algorithms and applications are also discussed and applied to real life images. Fractal Geometry in Digital imaging will appeal to postgraduates, researchers and practitioners in image processing, mathematics and computing, information technology and engineering.




Fractals


Book Description

The book provides an insight into the advantages and limitations of the use of fractals in biomedical data. It begins with a brief introduction to the concept of fractals and other associated measures and describes applications for biomedical signals and images. Properties of biological data in relations to fractals and entropy, and the association with health and ageing are also covered. The book provides a detailed description of new techniques on physiological signals and images based on the fractal and chaos theory. The aim of this book is to serve as a comprehensive guide for researchers and readers interested in biomedical signal and image processing and feature extraction for disease risk analyses and rehabilitation applications. While it provides the mathematical rigor for those readers interested in such details, it also describes the topic intuitively such that it is suitable for audience who are interested in applying the methods to healthcare and clinical applications. The book is the outcome of years of research by the authors and is comprehensive and includes other reported outcomes.




Fractals and Scaling in Finance


Book Description

Mandelbrot is world famous for his creation of the new mathematics of fractal geometry. Yet few people know that his original field of applied research was in econometrics and financial models, applying ideas of scaling and self-similarity to arrays of data generated by financial analyses. This book brings together his original papers as well as many original chapters specifically written for this book.




Chaos and Fractals in Engineering


Book Description

This book is written for all engineers, graduate students and beginners working in the application fields, and for experimental scientists in general. It is not presented as a purely theoretical treatise but shows mathematics at a workshop, so to speak, through important applications originating in a deep pure mathematical theory. Widely spread subjects which the author has encountered hitherto are briefly addressed in the book, as chaos and fractal science is a frontier of new research fields nowadays.




Fractal Geometry and Applications: Analysis, number theory, and dynamical systems


Book Description

This volume offers an excellent selection of cutting-edge articles about fractal geometry, covering the great breadth of mathematics and related areas touched by this subject. Included are rich survey articles and fine expository papers. The high-quality contributions to the volume by well-known researchers--including two articles by Mandelbrot--provide a solid cross-section of recent research representing the richness and variety of contemporary advances in and around fractal geometry. In demonstrating the vitality and diversity of the field, this book will motivate further investigation into the many open problems and inspire future research directions. It is suitable for graduate students and researchers interested in fractal geometry and its applications. This is a two-part volume. Part 1 covers analysis, number theory, and dynamical systems; Part 2, multifractals, probability and statistical mechanics, and applications.




Fractals in Multimedia


Book Description

This IMA Volume in Mathematics and its Applications FRACTALS IN MULTIMEDIA is a result of a very successful three-day minisymposium on the same title. The event was an integral part of the IMA annual program on Mathemat ics in Multimedia, 2000-2001. We would like to thank Michael F. Barnsley (Department of Mathematics and Statistics, University of Melbourne), Di etmar Saupe (Institut fUr Informatik, UniversiUit Leipzig), and Edward R. Vrscay (Department of Applied Mathematics, University of Waterloo) for their excellent work as organizers of the meeting and for editing the proceedings. We take this opportunity to thank the National Science Foundation for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE This volume grew out of a meeting on Fractals in Multimedia held at the IMA in January 2001. The meeting was an exciting and intense one, focused on fractal image compression, analysis, and synthesis, iterated function systems and fractals in education. The central concerns of the meeting were to establish within these areas where we are now and to develop a vision for the future.




Fractal Image Compression


Book Description

One half of the book is authored by Yuval Fisher himself, while articles from another 12 experts in the field present material from different points of view. The focus here is solely on fractal image encoding, with the aim of providing a working code that is usable in applications, while containing the complete details of how to encode and decode images. An indispensable "how to" guide, combining the very latest results in the field. Of interest to a very wide audience, ranging from experts in image processing to high school students.