Measure, Integration & Real Analysis


Book Description

This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/




Introduction to Measure Theory and Functional Analysis


Book Description

This book introduces readers to theories that play a crucial role in modern mathematics, such as integration and functional analysis, employing a unifying approach that views these two subjects as being deeply intertwined. This feature is particularly evident in the broad range of problems examined, the solutions of which are often supported by generous hints. If the material is split into two courses, it can be supplemented by additional topics from the third part of the book, such as functions of bounded variation, absolutely continuous functions, and signed measures. This textbook addresses the needs of graduate students in mathematics, who will find the basic material they will need in their future careers, as well as those of researchers, who will appreciate the self-contained exposition which requires no other preliminaries than basic calculus and linear algebra.




Measure, Integration, and Functional Analysis


Book Description

Measure, Integration, and Functional Analysis deals with the mathematical concepts of measure, integration, and functional analysis. The fundamentals of measure and integration theory are discussed, along with the interplay between measure theory and topology. Comprised of four chapters, this book begins with an overview of the basic concepts of the theory of measure and integration as a prelude to the study of probability, harmonic analysis, linear space theory, and other areas of mathematics. The reader is then introduced to a variety of applications of the basic integration theory developed in the previous chapter, with particular reference to the Radon-Nikodym theorem. The third chapter is devoted to functional analysis, with emphasis on various structures that can be defined on vector spaces. The final chapter considers the connection between measure theory and topology and looks at a result that is a companion to the monotone class theorem, together with the Daniell integral and measures on topological spaces. The book concludes with an assessment of measures on uncountably infinite product spaces and the weak convergence of measures. This book is intended for mathematics majors, most likely seniors or beginning graduate students, and students of engineering and physics who use measure theory or functional analysis in their work.




A Course in Functional Analysis and Measure Theory


Book Description

Written by an expert on the topic and experienced lecturer, this textbook provides an elegant, self-contained introduction to functional analysis, including several advanced topics and applications to harmonic analysis. Starting from basic topics before proceeding to more advanced material, the book covers measure and integration theory, classical Banach and Hilbert space theory, spectral theory for bounded operators, fixed point theory, Schauder bases, the Riesz-Thorin interpolation theorem for operators, as well as topics in duality and convexity theory. Aimed at advanced undergraduate and graduate students, this book is suitable for both introductory and more advanced courses in functional analysis. Including over 1500 exercises of varying difficulty and various motivational and historical remarks, the book can be used for self-study and alongside lecture courses.




Linear Algebra Done Right


Book Description

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.




Measure and Integration


Book Description

This book covers the material of a one year course in real analysis. It includes an original axiomatic approach to Lebesgue integration which the authors have found to be effective in the classroom. Each chapter contains numerous examples and an extensive problem set which expands considerably the breadth of the material covered in the text. Hints are included for some of the more difficult problems.




Principles of Analysis


Book Description

Principles of Analysis: Measure, Integration, Functional Analysis, and Applications prepares readers for advanced courses in analysis, probability, harmonic analysis, and applied mathematics at the doctoral level. The book also helps them prepare for qualifying exams in real analysis. It is designed so that the reader or instructor may select topics suitable to their needs. The author presents the text in a clear and straightforward manner for the readers’ benefit. At the same time, the text is a thorough and rigorous examination of the essentials of measure, integration and functional analysis. The book includes a wide variety of detailed topics and serves as a valuable reference and as an efficient and streamlined examination of advanced real analysis. The text is divided into four distinct sections: Part I develops the general theory of Lebesgue integration; Part II is organized as a course in functional analysis; Part III discusses various advanced topics, building on material covered in the previous parts; Part IV includes two appendices with proofs of the change of the variable theorem and a joint continuity theorem. Additionally, the theory of metric spaces and of general topological spaces are covered in detail in a preliminary chapter . Features: Contains direct and concise proofs with attention to detail Features a substantial variety of interesting and nontrivial examples Includes nearly 700 exercises ranging from routine to challenging with hints for the more difficult exercises Provides an eclectic set of special topics and applications About the Author: Hugo D. Junghenn is a professor of mathematics at The George Washington University. He has published numerous journal articles and is the author of several books, including Option Valuation: A First Course in Financial Mathematics and A Course in Real Analysis. His research interests include functional analysis, semigroups, and probability.




Lectures on Functional Analysis and the Lebesgue Integral


Book Description

This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and theorems. Most results are illustrated by the small lp spaces. The Lebesgue integral, meanwhile, is treated via the direct approach of Frigyes Riesz, whose constructive definition of measurable functions leads to optimal, clear-cut versions of the classical theorems of Fubini-Tonelli and Radon-Nikodým. Lectures on Functional Analysis and the Lebesgue Integral presents the most important topics for students, with short, elegant proofs. The exposition style follows the Hungarian mathematical tradition of Paul Erdős and others. The order of the first two parts, functional analysis and the Lebesgue integral, may be reversed. In the third and final part they are combined to study various spaces of continuous and integrable functions. Several beautiful, but almost forgotten, classical theorems are also included. Both undergraduate and graduate students in pure and applied mathematics, physics and engineering will find this textbook useful. Only basic topological notions and results are used and various simple but pertinent examples and exercises illustrate the usefulness and optimality of most theorems. Many of these examples are new or difficult to localize in the literature, and the original sources of most notions and results are indicated to help the reader understand the genesis and development of the field.




Measure and Integration


Book Description

A uniquely accessible book for general measure and integration, emphasizing the real line, Euclidean space, and the underlying role of translation in real analysis Measure and Integration: A Concise Introduction to Real Analysis presents the basic concepts and methods that are important for successfully reading and understanding proofs. Blending coverage of both fundamental and specialized topics, this book serves as a practical and thorough introduction to measure and integration, while also facilitating a basic understanding of real analysis. The author develops the theory of measure and integration on abstract measure spaces with an emphasis of the real line and Euclidean space. Additional topical coverage includes: Measure spaces, outer measures, and extension theorems Lebesgue measure on the line and in Euclidean space Measurable functions, Egoroff's theorem, and Lusin's theorem Convergence theorems for integrals Product measures and Fubini's theorem Differentiation theorems for functions of real variables Decomposition theorems for signed measures Absolute continuity and the Radon-Nikodym theorem Lp spaces, continuous-function spaces, and duality theorems Translation-invariant subspaces of L2 and applications The book's presentation lays the foundation for further study of functional analysis, harmonic analysis, and probability, and its treatment of real analysis highlights the fundamental role of translations. Each theorem is accompanied by opportunities to employ the concept, as numerous exercises explore applications including convolutions, Fourier transforms, and differentiation across the integral sign. Providing an efficient and readable treatment of this classical subject, Measure and Integration: A Concise Introduction to Real Analysis is a useful book for courses in real analysis at the graduate level. It is also a valuable reference for practitioners in the mathematical sciences.




Measure Theory And Functional Analysis


Book Description

This book provides an introduction to measure theory and functional analysis suitable for a beginning graduate course, and is based on notes the author had developed over several years of teaching such a course. It is unique in placing special emphasis on the separable setting, which allows for a simultaneously more detailed and more elementary exposition, and for its rapid progression into advanced topics in the spectral theory of families of self-adjoint operators. The author's notion of measurable Hilbert bundles is used to give the spectral theorem a particularly elegant formulation not to be found in other textbooks on the subject.