Measurement of Smoke Point in Laminar Jet Diffusion Flames at Atmospheric and Elevated Pressures


Book Description

Using a Burke-Schumman modeled co-flow burner, a quartz chimney, and a pressure vessel with good optical access, the smoke points in pure and diluted fuels were measured in a laminar jet diffusion flame. Ethylene and methane, burning in a velocity matched, over-ventilated co-flow of air, were tested over the ranges of 1 to 8 atmospheres and 2 to 16 atmospheres, respectively. Various diluents (nitrogen, argon, helium, and carbon dioxide) were added individually to the pure fuels to observe the effects they have on the smoke points and the adiabatic flame temperatures at atmospheric and elevated pressures. These diluents were chosen to allow a wide range of flame temperatures and fuel Lewis numbers to be investigated. For a given fuel flow rate, the dilution level was increased until the flame ceased emitting visible soot (defined as the smoke point). The height of the flame was then measured and the adiabatic flame temperature was calculated based on equilibrium chemistry. While some previous research has focused on the effects of flame temperature (through dilution) on smoke points, the measurements reported here were made to investigate the effects of pressure, different diluents, and varying dilution rates on sooting tendency. The main findings of these experiments were: increasing the amount of diluent to a pure fuel increases the smoke point, the smoke point is a function of the air to fuel velocity ratio, smoke point is strongly dependent on the inverse of pressure, and residence time decreases with increases in pressure.










Laminar Premixed and Diffusion Flames (Ground-Based Study)


Book Description

Ground-based studies of soot processes in laminar flames proceeded in two phases, considering laminar premixed flames and laminar diffusion flames, in turn. The test arrangement for laminar premixed flames involved round flat flame burners directed vertically upward at atmospheric pressure. The test arrangement for laminar jet diffusion flames involved a round fuel port directed vertically upward with various hydrocarbon fuels burning at atmospheric pressure in air. In both cases, coflow was used to prevent flame oscillations and measurements were limited to the flame axes. The measurements were sufficient to resolve soot nucleation, growth and oxidation rates, as well as the properties of the environment needed to evaluate mechanisms of these processes. The experimental methods used were also designed to maintain capabilities for experimental methods used in corresponding space-based experiments. This section of the report will be limited to consideration of flame structure for both premixed and diffusion flames. Dai, Z. and El-Leathy, A. M. and Lin, K.-C. and Sunderland, P. B. and Xu, F. and Faeth, G. M. and Urban, D. L. (Technical Monitor) and Yuan, Z.-G. (Technical Monitor) Glenn Research Center







Smoke-Point Properties of Nonbuoyant Round Laminar Jet Diffusion Flames


Book Description

The NASA Technical Reports Server (NTRS) houses half a million publications that are a valuable means of information to researchers, teachers, students, and the general public. These documents are all aerospace related with much scientific and technical information created or funded by NASA. Some types of documents include conference papers, research reports, meeting papers, journal articles and more. This is one of those documents.