Airborne/Space-Based Doppler Lidar Wind Sounders Sampling the Pbl and Other Regions of Significant Beta and U Inhomogeneities


Book Description

This final report covers the period from April 1994 through March 1998. The proposed research was organized under four main tasks. Those tasks were: (1) Investigate the vertical and horizontal velocity structures within and adjacent to thin and subvisual cirrus; (2) Investigate the lowest 1 km of the PBL and develop algorithms for processing pulsed Doppler lidar data obtained from single shots into regions of significant inhomogeneities in Beta and U; (3) Participate in OSSEs including those designed to establish shot density requirements for meso-gamma scale phenomena with quasi-persistent locations (e.g., jets, leewaves, tropical storms); and (4) Participate in the planning and execution of an airborne mission to measure winds with a pulsed CO2 Doppler lidar. Over the four year period of this research contract, work on all four tasks has yielded significant results which have led to 38 professional presentations (conferences and publications) and have been folded into the science justification for an approved NASA space mission, SPARCLE (SPAce Readiness Coherent Lidar Experiment), in 2001. Also this research has, through Task 4, led to a funded proposal to work directly on a NASA field campaign, CAMEX III, in which an airborne Doppler wind lidar will be used to investigate the cloud-free circulations near tropical storms. Monthly progress reports required under this contract are on file. This final report will highlight major accomplishments, including some that were not foreseen in the original proposal. The presentation of this final report includes this written document as well as material that is better presented via the internet (web pages). There is heavy reference to appended papers and documents. Thus, the main body of the report will serve to summarize the key efforts and findings. Emmitt, Dave Marshall Space Flight Center WIND VELOCITY MEASUREMENT; DOPPLER RADAR; OPTICAL RADAR; REMOTE SENSING; PLANETARY BOUNDARY LAYER; METEOROLOGICAL RADAR; ATMOSPHERIC S...




Coherent Doppler Wind Lidars in a Turbulent Atmosphere


Book Description

Radiophysical tools for measuring atmospheric dynamics include sodars, Doppler radars, and Doppler lidars. Among these, coherent Doppler lidars (CDLs) have been considered the best for remote measurement of wind turbulence. This is important not only for understanding the exchange processes in the boundary layer, but also in the applied aspect, such as aviation safety. CDLs significantly extend possibilities of experimental investigation of not only wind turbulence, but also coherent structures such as aircraft wake vortices. The authors of this book conducted field tests of the developed methods of lidar measurements of the wind velocity, atmospheric turbulence parameters, and aircraft wake vortices. This valuable resource, containing over 500 equations based on original results from the authors’ work, gives professionals a comprehensive description of the operating principles of continuous wave and pulsed coherent Doppler lidars. This book studies the possibilities of obtaining information about wind turbulence from data measured by continuous wave and pulsed CDLs. The procedures for estimation are described, as well as algorithms for numerical simulation. Results on the vortex behavior and evolution are then presented.










Remote Sensing of Atmospheric Conditions for Wind Energy Applications


Book Description

This Special Issue “Atmospheric Conditions for Wind Energy Applications” hosts papers on aspects of remote sensing for atmospheric conditions for wind energy applications. Wind lidar technology is presented from a theoretical view on the coherent focused Doppler lidar principles. Furthermore, wind lidar for applied use for wind turbine control, wind farm wake, and gust characterizations is presented, as well as methods to reduce uncertainty when using lidar in complex terrain. Wind lidar observations are used to validate numerical model results. Wind Doppler lidar mounted on aircraft used for observing winds in hurricane conditions and Doppler radar on the ground used for very short-term wind forecasting are presented. For the offshore environment, floating lidar data processing is presented as well as an experiment with wind-profiling lidar on a ferry for model validation. Assessments of wind resources in the coastal zone using wind-profiling lidar and global wind maps using satellite data are presented.




Doppler Lidar Wind Value-Added Product


Book Description

Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.