Measuring Plant-associated Nitrogen Fixation in Agricultural Systems


Book Description

Biological nitrogen fixation. Why, when an how to measure nitrogen fixation. Analysis of nitrogen. Nitrogen Balance Method. Nitrogen Difference method. Ureide (N solute) metode. N-isotopic methods. N-abundance method. N isotopic ditution method. prcaution whenquantifying N2 fixation associated with no-nodulatin plants (associative N2 fixation). Assays of nitrogenase activity.




Nitrogen in Agricultural Systems


Book Description

Review of the principles and management implications related to nitrogen in the soil-plant-water system.







Quantifying and Understanding Plant Nitrogen Uptake for Systems Modeling


Book Description

Discusses New Advancements to Improve Existing Simulations of Plant NitrogenWritten by research pioneers and leading scientists in the area of agricultural systems, Quantifying and Understanding Plant Nitrogen Uptake for Systems Modeling comprehensively covers plant N uptake in agricultural system models, especially for building soil-plant system m




Nitrogen in Agriculture


Book Description

Nitrogen is the most yield-restraining nutrient in crop production globally. Efficient nitrogen management is one of the most important factor for improving nitrogen use efficiency, field crops productivity and profitability. Efficient use of nitrogen for crop production is therefore very important for increasing grain yield, maximizing economic return and minimizing nitrous oxide (N2O) emission from the fields and nitrate (NO3) leaching to ground water. Integrated nitrogen management is a good strategy to improve plant growth, increase yield and yield components, grain quality and reduce environmental problems. Integrated nitrogen management (combined use of chemical + organic + bio-fertilizers) in field crop production is more resilient to climate change.




Methods for Evaluating Biological Nitrogen Fixation


Book Description

The cultivation of diazotrophic microorganisms. Measurement of nitrogen fixation by direct means. Measurement of nitrogen fixation by indirect means. Methods for legumes in glasshouses and controlled environment cabinets. Non-legumes nodule systems. Methods for studying nitrogenase. Methods for studying enzymes involved in metabolism related to nitrogenase. Preparation and experimental use of leghaemoglobin. Methods for identifying strains of diazotrophs. Genetic studies with diazotrophs. Experiments with crop and pasture legumes: principles and practice. Production and quality control of legume inoculants. Forage grasses and grain crops. Nitrogen fixation in natural plant communities and soils. Sytems involving blue-green algae (cyanobacteria).




Nitrogen Fixation in Crop Production


Book Description

This book presents the science, application, and politics of the use of nitrogen-fixing crop plants across the globe in various environments. Nitrogen fixation can help provide a growing population with a nutritious, environmentally friendly, sustainable food supply. From new "omics" approaches to the role of nitrogen fixation in mitigating greenhouse gas emissions, from farming strategies in nonindustrialized nations to nitrogen fixation in the global economy, scientists will find the key issues and expanding research areas, and how they contribute to the next wave of advancements related to agriculture and the environment




Nitrogen Fixation in Tropical Cropping Systems


Book Description

Nitrogen fixation by leguminous plants is especially important when farmers are trying to minimise fertilizer use for cost or environmental reasons. This second edition of the highly successful book, first published in 1991, contains thoroughly updated and revised material on the theory and practice of nitrogen fixation in tropical cropping systems.




Biological Nitrogen Fixation for Sustainable Agriculture


Book Description

Chemical fertilizers have had a significant impact on food production in the recent past, and are today an indispensable part of modern agriculture. On the other hand, the oil crisis of the 1970s and the current Middle East problems are constant reminders of the vulnerability of our fossil fuel dependent agriculture. There are vast areas of the developing world where N fertilizers are neither available nor affordable and, in most of these countries, balance of payment problems have resulted in the removal of N fertilizer subsidies. The external costs of environmental degradation and human health far exceed economic concerns. Input efficiency of N fertilizer is one of the lowest and, in turn, contributes substantially to environmental pollution. Nitrate in ground and surface waters and the threat to the stability of the ozone layer from gaseous oxides of nitrogen are major health and environmental concerns. The removal of large quantities of crop produce from the land also depletes soil of its native N reserves. Another concern is the decline in crop yields under continuous use of N fertilizers. These economic, environmental and production considerations dictate that biological alternatives which can augment, and in some cases replace, N fertilizers must be exploited. Long-term sustainability of agricultural systems must rely on the use and effective management of internal resources. The process of biological nitrogen fixation offers and economically attractive and ecologically sound means of reducing external nitrogen input and improving the quality and quantity of internal resources. In this book, we outline sustainability issues that dictate an increased use of biological nitrogen fixation and the constraints on its optimal use in agriculture.