Demystifying Fixed Income Analytics


Book Description

This book discusses important aspects of fixed income securities in emerging economies. Key features • Clarifies all conceptual and analytical aspects of fixed income securities and bonds, and covers important interest rate and credit derivative instruments in a simple and practical way. • Examines topics such as classifications of fixed income instruments; related risk-return measures; yield curve and term structure of interest rates; interest rate derivatives (forwards, futures and swaps), credit derivatives (credit default swaps); and trading strategies and risk management. • Provides step-by-step explanation of fixed income products by including real-life examples, scenarios and cases, especially in the context of emerging markets. • Presents consistent reference of actual market practices to make the chapters practice oriented while maintaining a lucid style complemented by adequate reading inputs and clear learning outcomes. • Includes complete solutions of numericals and cases for all chapters as an eResource on the Routledge website to aid understanding. The book will serve as a ready guide to both professionals from banking and finance industry (fixed income/bond dealers; fund/investment/portfolio managers; investment bankers; financial analysts/consultants; risk management specialists), and those in academics, including students, research scholars, and teachers in the fields of business management, banking, insurance, finance, financial economics, business economics, and risk management.




Professional Perspectives on Fixed Income Portfolio Management, Volume 1


Book Description

In the turbulent marketplace of the New Economy, portfolio managers must expertly control risk for investors who demand better and better returns even from the safest investments. Finance and investing expert Frank Fabozzi leads a team of experts in the discussion of the key issues of fixed income portfolio management in the latest Perspectives title from his best-selling library. Perspectives on Fixed Income Portfolio Management covers topics on the frontiers of fixed income portfolio management with a focus on risk control, volatility framework for the corporate market, risk management for fixed income asset management, and credit derivatives in portfolio management. Other important topics include: attribution of portfolio performance relative to an index; quantitative analysis of fixed income portfolios; value-at-risk for fixed-income portfolios; methodological trade-offs. The book also provides a variety of illustrations.




Investing in Mortgage-Backed and Asset-Backed Securities, + Website


Book Description

A complete guide to investing in and managing a portfolio of mortgage- and asset-backed securities Mortgage- and asset-backed securities are not as complex as they might seem. In fact, all of the information, financial models, and software needed to successfully invest in and manage a portfolio of these securities are available to the investment professional through open source software. Investing in Mortgage and Asset-Backed Securities + Website shows you how to achieve this goal. The book draws entirely on publicly available data and open source software to construct a complete analytic framework for investing in these securities. The analytic models used throughout the book either exist in the quantlib library, as an R package, or are programmed in R and incorporated into the analytic framework used. Examines the valuation of fixed-income securities—metrics, valuation framework, and return analysis Covers residential mortgage-backed securities—security cash flow, mortgage dollar roll, adjustable rate mortgages, and private label MBS Discusses prepayment modeling and the valuation of mortgage credit Presents mortgage-backed securities valuation techniques—pass-through valuation and interest rate models Engaging and informative, this book skillfully shows you how to build, rather than buy, models and proprietary analytical platforms that will allow you to invest in mortgage- and asset-backed securities.




CAIA Level I


Book Description

The official study text for the Level I Chartered Alternative Investment Analyst (CAIA) exam The Chartered Alternative Investment Analyst (CAIA) designation is the financial industry's first and only globally recognized program that prepares professionals to deal with the ever-growing field of alternative investments. The second edition of CAIA Level I: An Introduction to Core Topics in Alternative Investments contains comprehensive insights on the alternative investment issues a potential Level I candidate would need to know about as they prepare for the exam. The information found here will help you build a solid foundation in alternative investment markets—with coverage of everything from the characteristics of various strategies within each alternative asset class to portfolio management concepts central to alternative investments. Uses investment analytics to examine each alternative asset class Examines quantitative techniques used by investment professionals Addresses the unique attributes associated with the alternative investment space Offers an online study guide outlining learning objectives and keywords This book is a must-have resource for anyone contemplating taking the CAIA Level I exam. So if you're ready to take your first step toward the CAIA charter, take the time to understand the insights offered here.




An Introduction to Market Risk Measurement


Book Description

Includes a CD-ROM that contains Excel workbooks and a Matlab manual and software. Covers the subject without advanced or exotic material.




Fixed Income Markets


Book Description

This book is a comprehensive and in-depth account of the global debt capital markets. It covers a wide range of instruments and their applications, including derivative instruments. Highlights of the book include: Detailed description of the main products in use in the fixed income markets today, including analysis and valuation Summary of market conventions and trading practices Extensive coverage of associated derivatives including futures, swaps, options and credit derivatives Writing style aimed at a worldwide target audience An overview of trading and investment strategy. The contents will be invaluable reading for anyone with an interest in debt capital markets, especially investors, traders, bond salespersons, risk managers and banking consultants.




2024 CFA Program Curriculum Level I Box Set


Book Description

Discover the official resource for success on the 2024 CFA Level I exam. Get your copy of the CFA® Program Curriculum now. The 2024 CFA Program Curriculum Level I Box Set contains the content you need to perform well on the Level I CFA exam in 2024. Designed for candidates to use for exam preparation and professional reference purposes, this set includes the full official curriculum for Level I and is part of the larger CFA Candidate Body of Knowledge (CBOK). Covering all ten core topics found on the Level I exam, the 2024 CFA Program Curriculum Level I Box Set helps you: Develop critical knowledge and skills essential in the industry. Learn from financial thought leaders. Access market-relevant instruction. The set also features practice questions to assist with your mastery of key terms, concepts, and formulas. Volumes include: Volume 1: Quantitative Methods Volume 2: Economics and Financial Statement Analysis Volume 3: Financial Statement Analysis and Corporate Issuers Volume 4: Corporate Issuers, Equity Investments, and Fixed Income Volume 5: Fixed Income, Derivatives, Alternative Investments, and Portfolio Management Volume 6: Portfolio Management and Ethical and Professional Standards Indispensable for anyone preparing for the 2024 Level I CFA exam, the 2024 CFA Program Curriculum Level I Box Set is a must-have resource for those seeking the foundational skills required to become a Chartered Financial Analyst®.




Fixed-Income Portfolio Analytics


Book Description

The book offers a detailed, robust, and consistent framework for the joint consideration of portfolio exposure, risk, and performance across a wide range of underlying fixed-income instruments and risk factors. Through extensive use of practical examples, the author also highlights the necessary technical tools and the common pitfalls that arise when working in this area. Finally, the book discusses tools for testing the reasonableness of the key analytics to help build and maintain confidence for using these techniques in day-to-day decision making. This will be of keen interest to risk managers, analysts and asset managers responsible for fixed-income portfolios.




Optimization-Based Models for Measuring and Hedging Risk in Fixed Income Markets


Book Description

The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.