Oil Shale Technology


Book Description

This book focuses on the fundamental and engineering aspects of shale oil extraction, as well as the mathematical clarification of the complex transport mechanisms involved in oil shale pyrolysis. The influence of the chemical and physical environment on the enhancement of oil yield is explained, and ex situ and in situ technologies are reviewed and compared. The discussion on ex situ shale oil extraction includes both thermal and chemical extraction techniques such as retorting, solvent, and supercritical extraction. Parallels are drawn between the processes available for recovering and using other fossil fuel sources, such as coal and tar sands, and oil shale. In addition to covering the characteristics of oil shale, Oil Shale Technology summarizes the physical and chemical properties of shale oil obtained from various deposits around the world. The influence of the retorting process on the properties of the resulting oil shale is discussed, as are standardized techniques for determining these properties. Engineers, geologists, chemists, chemical engineers, and other researchers in the petroleum and chemical industries should consider this book an important reference resource.




Petroleum Rock Mechanics


Book Description

Petroleum Rock Mechanics: Drilling Operations and Well Design, Second Edition, keeps petroleum and drilling engineers centrally focused on the basic fundamentals surrounding geomechanics, while also keeping them up-to-speed on the latest issues and practical problems. Updated with new chapters on operations surrounding shale oil, shale gas, and hydraulic fracturing, and with new sections on in-situ stress, drilling design of optimal mud weight, and wellbore instability analysis, this book is an ideal resource. By creating a link between theory with practical problems, this updated edition continues to provide the most recent research and fundamentals critical to today's drilling operations. - Helps readers grasp the techniques needed to analyze and solve drilling challenges, in particular wellbore instability analysis - Teaches rock mechanic fundamentals and presents new concepts surrounding sand production and hydraulic fracturing operations - Includes new case studies and sample problems to practice




Shale Oil Production Processes


Book Description

Provides a brief overview of the chemistry, engineering, production, and processing of shale oil, including evolving processes and environmental regulations.




Deep Shale Oil and Gas


Book Description

Natural gas and crude oil production from hydrocarbon rich deep shale formations is one of the most quickly expanding trends in domestic oil and gas exploration. Vast new natural gas and oil resources are being discovered every year across North America and one of those new resources comes from the development of deep shale formations, typically located many thousands of feet below the surface of the Earth in tight, low permeability formations. Deep Shale Oil and Gas provides an introduction to shale gas resources as well as offer a basic understanding of the geomechanical properties of shale, the need for hydraulic fracturing, and an indication of shale gas processing. The book also examines the issues regarding the nature of shale gas development, the potential environmental impacts, and the ability of the current regulatory structure to deal with these issues. Deep Shale Oil and Gas delivers a useful reference that today's petroleum and natural gas engineer can use to make informed decisions about meeting and managing the challenges they may face in the development of these resources. - Clarifies all the basic information needed to quickly understand today's deeper shale oil and gas industry, horizontal drilling, fracture fluids chemicals needed, and completions - Addresses critical coverage on water treatment in shale, and important and evolving technology - Practical handbook with real-world case shale plays discussed, especially the up-and-coming deeper areas of shale development




Shale Oil and Gas Production Processes


Book Description

Shale Oil and Gas Production Processes delivers the basics on current production technologies and the processing and refining of shale oil. Starting with the potential of formations and then proceeding to production and completion, this foundational resource also dives into the chemical and physical nature of the precursor of oil shale, kerogen, to help users understand and optimize its properties in shale. Rounding out with reporting, in situ retorting, refining and environmental aspects, this book gives engineers and managers a strong starting point on how to manage the challenges and processes necessary for the further development of these complex resources. - Helps readers grasp current research on production from shale formations, including properties and composition - Fill in the gaps between research and practical application, including discussions of existing literature - Includes a glossary to help readers fully understand key concepts




Geomechanics and Hydraulic Fracturing for Shale Reservoirs


Book Description

This book is intended as a reference book for advanced graduate students and research engineers in shale gas development or rock mechanical engineering. Globally, there is widespread interest in exploiting shale gas resources to meet rising energy demands, maintain energy security and stability in supply and reduce dependence on higher carbon sources of energy, namely coal and oil. However, extracting shale gas is a resource intensive process and is dependent on the geological and geomechanical characteristics of the source rocks, making the development of certain formations uneconomic using current technologies. Therefore, evaluation of the physical and mechanical properties of shale, together with technological advancements, is critical in verifying the economic viability of such formation. Accurate geomechanical information about the rock and its variation through the shale is important since stresses along the wellbore can control fracture initiation and frac development. In addition, hydraulic fracturing has been widely employed to enhance the production of oil and gas from underground reservoirs. Hydraulic fracturing is a complex operation in which the fluid is pumped at a high pressure into a selected section of the wellbore. The interaction between the hydraulic fractures and natural fractures is the key to fracturing effectiveness prediction and high gas development. The development and growth of a hydraulic fracture through the natural fracture systems of shale is probably more complex than can be described here, but may be somewhat predictable if the fracture system and the development of stresses can be explained. As a result, comprehensive shale geomechanical experiments, physical modeling experiment and numerical investigations should be conducted to reveal the fracturing mechanical behaviors of shale.




Complex Mixtures and Cancer Risk


Book Description

This study addresses two fundamental issues in the assessment of cancer risks due to exposure to complex mixtures: that of gathering suitable scientific data and that of the predictive use of the available data.




Mechanics of Oil Shale


Book Description




Fundamentals of Enhanced Oil Recovery Methods for Unconventional Oil Reservoirs


Book Description

Fundamentals of Enhanced Oil Recovery Methods for Unconventional Oil Reservoirs, Volume 67 provides important guidance on which EOR methods work in shale and tight oil reservoirs. This book helps readers learn the main fluid and rock properties of shale and tight reservoirs—which are the main target for EOR techniques—and understand the physical and chemical mechanisms for the injected EOR fluids to enhance oil recovery in shale and tight oil reservoirs. The book explains the effects of complex hydraulic fractures and natural fractures on the performance of each EOR technique. The book describes the parameters affecting obtained oil recovery by injecting different EOR methods in both the microscopic and macroscopic levels of ULR. This book also provides proxy models to associate the functionality of the improved oil recovery by injecting different EOR methods with different operating parameters, rock, and fluid properties. The book provides profesasionals working in the petroleum industry the know-how to conduct a successful project for different EOR methods in shale plays, while it also helps academics and students in understanding the basics and principles that make the performance of EOR methods so different in conventional reservoirs and unconventional formations. - Provides a general workflow for how to conduct a successful project for different EOR methods in these shale plays - Provides general guidelines for how to select the best EOR method according to the reservoir characteristics and wells stimulation criteria - Explains the basics and principles that make the performance of EOR methods so different in conventional reservoirs versus unconventional formations




Sustainable Shale Oil and Gas


Book Description

Shale oil and gas have altered the energy landscape, possibly permanently. They burst upon the fossil energy scene with a suddenness that initially defied prediction. Even the political balance of the world has changed. But, with the methods employed, the vast majority of the oil and gas remains in the ground. At the same time, serious environmental impact issues have been raised. A new volume in the Emerging Issues in Analytical Chemistry series, Sustainable Shale Oil and Gas: Analytical Chemistry, Geochemistry, and Biochemistry Methods was written on the premise that analytical methods to inform these areas were wanting. While not attempting to be comprehensive, it describes important analytical methods, some still in development. These methods are underpinned primarily by chemistry, but geochemistry and even biochemistry play significant roles. The book has a solutions flavor; problems are posed together with approaches to ameliorate them. - Provides a clear understanding of the potential environmental issues as well as a path to solutions - Includes background information for understanding potential impacts of shale operations from both an environmental and public health perspective - Authored by leaders from diverse disciplines with expertise in a variety of areas: groundwater quality, petroleum-related operations, microbial ecology, and electronic technologies - Reviews new sensing and evaluation methods that could be key enablers to sustainable fracking: portable mass spectrometry, microbiome analysis, DNA as tracers, and a microparticulate matter detector