Mechanism and Kinetics of Addition Polymerizations


Book Description

This volume presents an up-to-date survey of knowledge concerning addition type polymerizations. It contains nine chapters, each of which covers a particular basic term. Whenever necessary, the phenomena are discussed from the viewpoint of both stationary and non-stationary state of radical, ionic (i.e. anionic and cationic) and coordination polymerization. Special attention has been paid to the propagation process. It provides not only a general overview but also information on important special cases (theoretical conditions of propagation, influence of external factors, controlled propagation, copolymerization, mechanism of various propagation types, etc.). The book is arranged according to the basic steps in chain reactions, which is a novel approach in a monograph on this topic. It facilitates the identification of common features of various polymerization types which may appear quite different. This useful, comprehensive text should prove invaluable to all those involved in the field of macromolecular chemistry. It will also be of interest to all chemists who, beside the profound study of their own field, are looking for interdisciplinary liaison points.




The Chemistry of Radical Polymerization


Book Description

This book commences with a general introduction outlining the basic concepts of radical polymerization. This is followed by a chapter on radical reactions that is intended to lay the theoretical ground-work for the succeeding chapters on initiation, propagation and termination.




Radical Polymerization


Book Description

This volume from the successful Macromolecular Symposia series presents the contributions from the IUPAC-sponsored International Symposium on "Radical Polymerization: Kinetics and Mechanism", held in Il Ciocco, Italy, in September, 2006. This was the fourth within the series of so-called SML conferences, which are the major scientific forum for addressing kinetic and mechanistic aspects of free-radical polymerization and controlled radical polymerization. SML IV again marked an important step forward toward the better understanding of the kinetics and mechanism of radical polymerization, which is extremely relevant for both conventional and controlled radical polymerization and for people in academia as well as in industry. Here, top international authors, such as K. Matyjaszewski, T. P. Davis and T. Fukuda, present their latest research. The five major themes covered were: Fundamentals of free-radical polymerization, heterogeneous polymerization, controlled radical polymerization, polymer reaction engineering, and polymer characterization.




Monitoring Polymerization Reactions


Book Description

Offers new strategies to optimize polymer reactions With contributions from leading macromolecular scientists and engineers, this book provides a practical guide to polymerization monitoring. It enables laboratory researchers to optimize polymer reactions by providing them with a better understanding of the underlying reaction kinetics and mechanisms. Moreover, it opens the door to improved industrial-scale reactions, including enhanced product quality and reduced harmful emissions. Monitoring Polymerization Reactions begins with a review of the basic elements of polymer reactions and their kinetics, including an overview of stimuli-responsive polymers. Next, it explains why certain polymer and reaction characteristics need to be monitored. The book then explores a variety of practical topics, including: Principles and applications of important polymer characterization tools, such as light scattering, gel permeation chromatography, calorimetry, rheology, and spectroscopy Automatic continuous online monitoring of polymerization (ACOMP) reactions, a flexible platform that enables characterization tools to be employed simultaneously during reactions in order to obtain a complete record of multiple reaction features Modeling of polymerization reactions and numerical approaches Applications that optimize the manufacture of industrially important polymers Throughout the book, the authors provide step-by-step strategies for implementation. In addition, ample use of case studies helps readers understand the benefits of various monitoring strategies and approaches, enabling them to choose the best one to match their needs. As new stimuli-responsive and "intelligent" polymers continue to be developed, the ability to monitor reactions will become increasingly important. With this book as their guide, polymer scientists and engineers can take full advantage of the latest monitoring strategies to optimize reactions in both the lab and the manufacturing plant.







Fundamentals of Polymerization


Book Description

Over the last twenty years, the field of the chemistry of polymerization witnessed enormous growth through the development of new concepts, catalysts, processes etc. Examples are: non classical living polymerizations (group transfer polymerization, living carbocationic polymerization, living radical polymerization and living ring-opening metathesis polymerization (ROMP)); new catalysts (metallocenes and late transition metal catalysts for stereospecific polymerization, Schrock and Grubbs catalyst for ROMP among others) and new processes such as miniemulsion, microemulsion polymerization and dispersion polymerization (in polar solvents). Apart from the developments in the chemistry of polymerization, methods have been developed for the evaluation of highly reliable rate constants of propagation in radical as well as cationic polymerization. All these have revolutionized the field of synthetic polymer chemistry. In the book, fundamentals of both the new and old polymerization chemistry have been dealt with. The new chemistry has been given nearly equal space along with the old.




Template Polymerization


Book Description

"Template polymerization is a new field in polymer synthesis but common practice in the biosynthesis since DNA is the most popular template or matrix on which proteins are built by living species. This field is relevant to the synthesis of polymers of controlled structure but its application goes beyond the synthesis. Materials are formulated in complex mixtures always containing components which can be regarded as templates on which other materials are formed, modified, or are interacted with. In the new product development the relevance of these phenomena is controlled by the order of addition which affects probabilities and preferences of interaction. The current publication outlines mechanisms of template polymerization, polycondensation, and copolymerization. These mechanisms, illustrated with numerous examples, indicate a range of possibilities which can be encountered in materials and utilized to modify their properties. Orientation of substrates on template and their effect on modification of their reactivity and properties such as, for example, absorption of light or water are also discussed. Several chapters contain information on these studies discussed with sufficient detail to give reader comprehensive understanding of the methods used in various research laboratories and their findings."--Publisher's description.




Anionic Polymerization


Book Description

This work introduces the basic theories and experimental methods of anionic polymerization as well as the synthesis, analysis and characteristics of anionic polymerized products. It details the creation of linear and branched polymers, random and block copolymers, graft and macromonomers, and many other substances. The work emphasizes the relationship between fundamental principles and commercial applications.;College or university bookstores may purchase five or more copies at a special student price, available on request from Marcel Dekker, Inc.




Expanding Monomers


Book Description

Expanding Monomers: Synthesis, Characterization, and Applications provides a thorough discussion of expanding polymer systems and their potential applications. The scope of the book includes background information on conventional monomers, their polymeric systems, and associated shrinkage problems. Monomers that expand during polymerization are covered in detail, including their synthesis and characterization. Polymerization (homopolymerization and copolymerization) of expanding monomers is discussed, in addition to mechanisms and kinetics of several polymerization processes, such as cationic initiation and free radical ring-opening polymerization. The book also explores various applications in which expanding polymer systems have potential. These applications include coatings, casting and potting materials, composite adhesives, and electrical insulations. Expanding Monomers: Synthesis, Characterization, and Applications will be valuable as a reference for manufacturers, researchers, teachers, and students in polymer and materials science, in addition to industry and university libraries.




Aspen Plus


Book Description

ASPEN PLUS® Comprehensive resource covering Aspen Plus V12.1 and demonstrating how to implement the program in versatile chemical process industries Aspen Plus®: Chemical Engineering Applications facilitates the process of learning and later mastering Aspen Plus®, the market-leading chemical process modeling software, with step-by-step examples and succinct explanations. The text enables readers to identify solutions to various process engineering problems via screenshots of the Aspen Plus® platforms in parallel with the related text. To aid in information retention, the text includes end-of-chapter problems and term project problems, online exam and quiz problems for instructors that are parametrized (i.e., adjustable) so that each student will have a standalone version, and extra online material for students, such as Aspen Plus®-related files, that are used in the working tutorials throughout the entire textbook. The second edition of Aspen Plus®: Chemical Engineering Applications includes information on: Various new features that were embedded into Aspen Plus V12.1 and existing features which have been modified Aspen Custom Modeler (ACM), covering basic features to show how to merge customized models into Aspen Plus simulator New updates to process dynamics and control and process economic analysis since the first edition was published Vital areas of interest in relation to the software, such as polymerization, drug solubility, solids handling, safety measures, and energy saving For chemical engineering students and industry professionals, the second edition of Aspen Plus®: Chemical Engineering Applications is a key resource for understanding Aspen Plus and the new features that were added in version 12.1 of the software. Many supplementary learning resources help aid the reader with information retention.




Recent Books