Mechanistic Modeling of Unbound Granular Materials


Book Description

Several tests are used for characterizing unbound granular materials for pavement applications. The California Bearing Ratio (CBR), resilient modulus (MR), Dynamic Cone Penetrometer (DCP) tests are three of the most common tests used for this purpose. The objective of this research is twofold. The first is to develop numerical models for these three tests. The second is to investigate relationship between basic material properties, boundary conditions, and test results, ultimately, to develop a physics-based correlation between these tests. A 3-D discrete element method (DEM) based model is adapted to simulate these tests. Good agreement is observed between the results of the simulations and sample numerical and experimental studies on granular materials. The DEM code is used to determine effects of aggregate shape, coefficient of friction, gradation, stiffness and other details on test results. The model is also used to investigate statistics of inter-particle interaction between the granular particles.







Performance Characterisation of Unbound Granular Pavement Materials


Book Description

This document contains the proceedings of the National workshop on Performance characterisation of unbound granular pavement materials, held in Australia 27 April 1995. The session titles are as follows: Session 1 - AUSTROADS industry perspective; Session 2 - New technologies and developments; Sessions 3 & 4 - Facilitated forums and experimental panel; Session 5 - Facilitated forum. The papers presented at the sessions are as follows: Session 1 - Partnerships between Austroads and industry in technical developments (Midgley, L); Industry partnerships in technical development (Yates, T). Session 2 - An overview of AUSTROADS pavement design and analysis procedures (Jameson, G); An overview of mechanistic testing of unbound granular pavement materials (Andrews, B). Sessions 3 & 4 - 'Identifying the problems' and ;Looking for solutions' (Midgley, L, Jameson, G and Yates, T). Session 5 - "Where to from here" (Gordon, R, facilitator).




Performance Based Characterization of Virgin and Recycled Aggregate Base Materials


Book Description

Characterization of the effect of physical properties on the performance such as stiffness and drainage of unbound granular materials is necessary in order to incorporate them in pavement design. The stiffness, deformation and permeability behaviour of unbound granular materials are the essential design inputs for Mechanistic-Empirical Pavement Design Guide as well as empirical design methods. The performance based specifications are aimed to design, and construct a durable and cost effective material throughout the design life of a pavement. However, the specification varies among jurisdiction depending on the historical or current practice, locally available materials, landform, climate and drainage. A literature review on the current unbound granular materials virgin and recycled concrete aggregate base construction specification has been carried out in this study. Resilient modulus, permanent deformation and permeability tests have been carried out on seven gradations of materials from locally available sources. Resilient modulus stiffness of unbound granular material at two different conditioning stress level have been compared in the study. The long term deformation behaviour has also been characterized from results of the permanent deformation test using shakedown approach, dissipated energy approach and a simplified approach. The results show improvement in resilient modulus and permanent deformation for the proposed specification compared to the currently used materials as a results of reduced fines content, increased crush count and inclusion of larger maximum aggregate size into the gradation. A significant effect of particle packing on permeability of granular materials have also been found, in addition to the effect of fines.







Guide for the Local Calibration of the Mechanistic-empirical Pavement Design Guide


Book Description

This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.




Modelling of the Resilient and Permanent Deformation Behaviour of Subgrade Soils and Unbound Granular Materials


Book Description

Laboratory characterization of subgrade soils and unbound granular materials is an essential component of the Mechanistic-Empirical Pavement Design Guide (Pavement ME). The design thickness and performance of a pavement structure are highly dependent on the deformation behaviour of subgrade and granular material. Specifications for granular materials vary among transportation agencies based on the availability of materials, climatic conditions, and function. Specifications aim to provide durable materials that meet design requirements and achieve the target design life with cost effective materials. The objectives of the research are to: • evaluate resilient modulus of typical fine-grained soils under traffic loading. • evaluate resilient modulus, permanent deformation, and permeability of typical unbound granular materials. • evaluate the effect of moisture and fines fraction on the performance of unbound granular materials and subgrade soil. • develop prediction models for resilient modulus to improve reliability of Level 2 inputs in the Pavement ME. • provide test data in support of updating Manitoba Infrastructure and Transportation specifications for unbound granular materials to improve the performance of pavement structures. Resilient modulus tests were conducted on three types of subgrade soil (high plastic clay, sandy clay, and silty sand/sandy silt) at four levels of moisture content. Resilient modulus, permanent deformation and permeability tests were conducted on six gradations representing two types of granular material (100% crushed limestone and gravel) at two levels of moisture content. Prediction models were developed for resilient modulus and compared to the models developed under the Long Term Pavement Performance program. The proposed models provided more reliable predictions with lower root mean square error. The deformation behaviour of the granular materials was classified according to the shakedown and dissipated energy approaches. Among the tested fines contents, limestone and gravel materials with optimum fines contents of 4.5% and 9%, respectively, had better resistance to plastic deformation and higher resilient modulus. The dissipated energy approach can be used to determine the stress ratio for the boundary between post compaction and stable zones from multistage triaxial testing. Result of permeability tests showed that the hydraulic conductivity of unbound granular material increased as the fines content decreased.




Functional Pavement Design


Book Description

Functional Pavement Design is a collections of 186 papers from 27 different countries, which were presented at the 4th Chinese-European Workshops (CEW) on Functional Pavement Design (Delft, the Netherlands, 29 June-1 July 2016). The focus of the CEW series is on field tests, laboratory test methods and advanced analysis techniques, and cover analysis, material development and production, experimental characterization, design and construction of pavements. The main areas covered by the book include: - Flexible pavements - Pavement and bitumen - Pavement performance and LCCA - Pavement structures - Pavements and environment - Pavements and innovation - Rigid pavements - Safety - Traffic engineering Functional Pavement Design is for contributing to the establishment of a new generation of pavement design methodologies in which rational mechanics principles, advanced constitutive models and advanced material characterization techniques shall constitute the backbone of the design process. The book will be much of interest to professionals and academics in pavement engineering and related disciplines.




New Developments in Soil Characterization and Soil Stability


Book Description

This book presents new studies dealing with the attempts made by the scientists and practitioners to address contemporary issues in geotechnical engineering such as characterization of soil, geomaterials, soil stability and some other geomechanics issues that are becoming quite relevant in today's world. Papers were selected from the 5th GeoChina International Conference on Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, held on July 23-25, 2018 in HangZhou, China.