Metaheuristics for Finding Multiple Solutions


Book Description

This book presents the latest trends and developments in multimodal optimization and niching techniques. Most existing optimization methods are designed for locating a single global solution. However, in real-world settings, many problems are “multimodal” by nature, i.e., multiple satisfactory solutions exist. It may be desirable to locate several such solutions before deciding which one to use. Multimodal optimization has been the subject of intense study in the field of population-based meta-heuristic algorithms, e.g., evolutionary algorithms (EAs), for the past few decades. These multimodal optimization techniques are commonly referred to as “niching” methods, because of the nature-inspired “niching” effect that is induced to the solution population targeting at multiple optima. Many niching methods have been developed in the EA community. Some classic examples include crowding, fitness sharing, clearing, derating, restricted tournament selection, speciation, etc. Nevertheless, applying these niching methods to real-world multimodal problems often encounters significant challenges. To facilitate the advance of niching methods in facing these challenges, this edited book highlights the latest developments in niching methods. The included chapters touch on algorithmic improvements and developments, representation, and visualization issues, as well as new research directions, such as preference incorporation in decision making and new application areas. This edited book is a first of this kind specifically on the topic of niching techniques. This book will serve as a valuable reference book both for researchers and practitioners. Although chapters are written in a mutually independent way, Chapter 1 will help novice readers get an overview of the field. It describes the development of the field and its current state and provides a comparative analysis of the IEEE CEC and ACM GECCO niching competitions of recent years, followed by a collection of open research questions and possible research directions that may be tackled in the future.




Handbook of Heuristics


Book Description

Heuristics are strategies using readily accessible, loosely applicable information to control problem solving. Algorithms, for example, are a type of heuristic. By contrast, Metaheuristics are methods used to design Heuristics and may coordinate the usage of several Heuristics toward the formulation of a single method. GRASP (Greedy Randomized Adaptive Search Procedures) is an example of a Metaheuristic. To the layman, heuristics may be thought of as ‘rules of thumb’ but despite its imprecision, heuristics is a very rich field that refers to experience-based techniques for problem-solving, learning, and discovery. Any given solution/heuristic is not guaranteed to be optimal but heuristic methodologies are used to speed up the process of finding satisfactory solutions where optimal solutions are impractical. The introduction to this Handbook provides an overview of the history of Heuristics along with main issues regarding the methodologies covered. This is followed by Chapters containing various examples of local searches, search strategies and Metaheuristics, leading to an analyses of Heuristics and search algorithms. The reference concludes with numerous illustrations of the highly applicable nature and implementation of Heuristics in our daily life. Each chapter of this work includes an abstract/introduction with a short description of the methodology. Key words are also necessary as part of top-matter to each chapter to enable maximum search engine optimization. Next, chapters will include discussion of the adaptation of this methodology to solve a difficult optimization problem, and experiments on a set of representative problems.




Essays and Surveys in Metaheuristics


Book Description

Finding exact solutions to many combinatorial optimization problems in busi ness, engineering, and science still poses a real challenge, despite the impact of recent advances in mathematical programming and computer technology. New fields of applications, such as computational biology, electronic commerce, and supply chain management, bring new challenges and needs for algorithms and optimization techniques. Metaheuristics are master procedures that guide and modify the operations of subordinate heuristics, to produce improved approx imate solutions to hard optimization problems with respect to more simple algorithms. They also provide fast and robust tools, producing high-quality solutions in reasonable computation times. The field of metaheuristics has been fast evolving in recent years. Tech niques such as simulated annealing, tabu search, genetic algorithms, scatter search, greedy randomized adaptive search, variable neighborhood search, ant systems, and their hybrids are currently among the most efficient and robust optimization strategies to find high-quality solutions to many real-life optimiza tion problems. A very large nmnber of successful applications of metaheuristics are reported in the literature and spread throughout many books, journals, and conference proceedings. A series of international conferences entirely devoted to the theory, applications, and computational developments in metaheuristics has been attracting an increasing number of participants, from universities and the industry.




Encyclopedia of Operations Research and Management Science


Book Description

Operations Research: 1934-1941," 35, 1, 143-152; "British The goal of the Encyclopedia of Operations Research and Operational Research in World War II," 35, 3, 453-470; Management Science is to provide to decision makers and "U. S. Operations Research in World War II," 35, 6, 910-925; problem solvers in business, industry, government and and the 1984 article by Harold Lardner that appeared in academia a comprehensive overview of the wide range of Operations Research: "The Origin of Operational Research," ideas, methodologies, and synergistic forces that combine to 32, 2, 465-475. form the preeminent decision-aiding fields of operations re search and management science (OR/MS). To this end, we The Encyclopedia contains no entries that define the fields enlisted a distinguished international group of academics of operations research and management science. OR and MS and practitioners to contribute articles on subjects for are often equated to one another. If one defines them by the which they are renowned. methodologies they employ, the equation would probably The editors, working with the Encyclopedia's Editorial stand inspection. If one defines them by their historical Advisory Board, surveyed and divided OR/MS into specific developments and the classes of problems they encompass, topics that collectively encompass the foundations, applica the equation becomes fuzzy. The formalism OR grew out of tions, and emerging elements of this ever-changing field. We the operational problems of the British and U. s. military also wanted to establish the close associations that OR/MS efforts in World War II.




Heuristics, Metaheuristics and Approximate Methods in Planning and Scheduling


Book Description

The scope of this book is limited to heuristics, metaheuristics, and approximate methods and algorithms as applied to planning and scheduling problems. While it is not possible to give a comprehensive treatment of this topic in one book, the aim of this work is to provide the reader with a diverse set of planning and scheduling problems and different heuristic approaches to solve them. The problems range from traditional single stage and parallel machine problems to more modern settings such as robotic cells and flexible job shop networks. Furthermore, some chapters deal with deterministic problems while some others treat stochastic versions of the problems. Unlike most of the literature that deals with planning and scheduling problems in the manufacturing and production environments, in this book the environments were extended to nontraditional applications such as spatial scheduling (optimizing space over time), runway scheduling, and surgical scheduling. The solution methods used in the different chapters of the book also spread from well-established heuristics and metaheuristics such as Genetic Algorithms and Ant Colony Optimization to more recent ones such as Meta-RaPS.




Essentials of Metaheuristics (Second Edition)


Book Description

Interested in the Genetic Algorithm? Simulated Annealing? Ant Colony Optimization? Essentials of Metaheuristics covers these and other metaheuristics algorithms, and is intended for undergraduate students, programmers, and non-experts. The book covers a wide range of algorithms, representations, selection and modification operators, and related topics, and includes 71 figures and 135 algorithms great and small. Algorithms include: Gradient Ascent techniques, Hill-Climbing variants, Simulated Annealing, Tabu Search variants, Iterated Local Search, Evolution Strategies, the Genetic Algorithm, the Steady-State Genetic Algorithm, Differential Evolution, Particle Swarm Optimization, Genetic Programming variants, One- and Two-Population Competitive Coevolution, N-Population Cooperative Coevolution, Implicit Fitness Sharing, Deterministic Crowding, NSGA-II, SPEA2, GRASP, Ant Colony Optimization variants, Guided Local Search, LEM, PBIL, UMDA, cGA, BOA, SAMUEL, ZCS, XCS, and XCSF.




Multi-Objective Combinatorial Optimization Problems and Solution Methods


Book Description

Multi-Objective Combinatorial Optimization Problems and Solution Methods discusses the results of a recent multi-objective combinatorial optimization achievement that considered metaheuristic, mathematical programming, heuristic, hyper heuristic and hybrid approaches. In other words, the book presents various multi-objective combinatorial optimization issues that may benefit from different methods in theory and practice. Combinatorial optimization problems appear in a wide range of applications in operations research, engineering, biological sciences and computer science, hence many optimization approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic and algebraic techniques. This book covers this important topic as computational optimization has become increasingly popular as design optimization and its applications in engineering and industry have become ever more important due to more stringent design requirements in modern engineering practice. - Presents a collection of the most up-to-date research, providing a complete overview of multi-objective combinatorial optimization problems and applications - Introduces new approaches to handle different engineering and science problems, providing the field with a collection of related research not already covered in the primary literature - Demonstrates the efficiency and power of the various algorithms, problems and solutions, including numerous examples that illustrate concepts and algorithms




Nature-Inspired Optimization Algorithms


Book Description

Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm




Metaheuristics


Book Description

A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.




Metaheuristics for Machine Learning


Book Description

Using metaheuristics to enhance machine learning techniques has become trendy and has achieved major successes in both supervised (classification and regression) and unsupervised (clustering and rule mining) problems. Furthermore, automatically generating programs via metaheuristics, as a form of evolutionary computation and swarm intelligence, has now gained widespread popularity. This book investigates different ways of integrating metaheuristics into machine learning techniques, from both theoretical and practical standpoints. It explores how metaheuristics can be adapted in order to enhance machine learning tools and presents an overview of the main metaheuristic programming methods. Moreover, real-world applications are provided for illustration, e.g., in clustering, big data, machine health monitoring, underwater sonar targets, and banking.




Recent Books