Metal Removal and Recovery from Mining Wastewater and E-waste Leachate


Book Description

Metal contamination in the environment is a persisting global issue. The metal reservoirs in the earth have declined due to society’s needs and due to uncontrolled mining activities. Therefore, the idea to recover metals from waste streams has emerged. In this thesis, cost competitive technologies such as adsorption using agro-wastes and precipitation using an inverse fluidized bed (IFB) reactor were investigated, with special emphasis on the recovery of base metals. Groundnut shell showed good potential for metal (Cu, Pb and Zn) removal. From artificial neural network modeling, the performance of the sulfate reducing bacteria (SRB) was found to be strongly pH dependent; the removal efficiency of Cu and Zn in the IFB at pH 5.0 was >97%. Electronic waste is a good candidate as secondary metal resource. The recovery of Cu from computer printed circuited boards (PCBs) using biogenic sulfide precipitation was investigated as well. Using this technology, Cu could be recovered at ~0.48 g Cu/g PCBs.




Metal Removal and Recovery from Mining Wastewater and E-waste Leachate


Book Description

Metal contamination in the environment is a persisting global issue. The metal reservoirs in the earth have declined due to society’s needs and due to uncontrolled mining activities. Therefore, the idea to recover metals from waste streams has emerged. In this thesis, cost competitive technologies such as adsorption using agro-wastes and precipitation using an inverse fluidized bed (IFB) reactor were investigated, with special emphasis on the recovery of base metals. Groundnut shell showed good potential for metal (Cu, Pb and Zn) removal. From artificial neural network modeling, the performance of the sulfate reducing bacteria (SRB) was found to be strongly pH dependent; the removal efficiency of Cu and Zn in the IFB at pH 5.0 was >97%. Electronic waste is a good candidate as secondary metal resource. The recovery of Cu from computer printed circuited boards (PCBs) using biogenic sulfide precipitation was investigated as well. Using this technology, Cu could be recovered at ~0.48 g Cu/g PCBs.




Microbial Technology for Sustainable E-waste Management


Book Description

This book, besides discussing challenges and opportunities, will reveal the microbe-metal interactions and strategies for e-waste remediation in different ecosystems. It will unveil the recent biotechnological advancement and microbiological approach to sustainable biorecycling of e-waste such as bioleaching for heavy metal extraction, valorization of precious metal, biodegradation of e-plastic, the role of the diverse microbial community in e-waste remediation, genetically engineered microbes for e-waste management, the importance of microbial exopolysaccharides in metal biosorption, next-generation technologies, omics-based technologies etc. It also holds the promise to discuss the conservation, utilization and cataloging indigenous microbes in e-waste-polluted niches and promising hybrid technology for sustainable e-waste management. Revolution in the area of information technology and communication is constantly evolving due to scientific research and development. Concurrently, the production of new electrical and electronic equipment also thus uplifting in this era of revolution. These technological advancements certainly have problematic consequences which is the rise of huge amounts of electronic obsoletes or electronic waste (e-waste). Improper management of both hazardous and nonhazardous substances of e-waste led to a major concern in our digital society and environment. Therefore, a sustainable approach including microbial candidates to tackle e-waste is the need of the hour. Nevertheless, the continuous demand for new-generation gadgets and electronics set this high-tech evolution to a new frontier in the last few years. With this continuing trend of technological development, e-waste is expanding exponentially worldwide. In the year of 2019, the worldwide generation of e-waste was approximately 53.6 Mt, of which only about 17.4% of e-waste was collected and recycled, and the other 82.6% was not even documented. E-waste contains various heterogeneous waste complexes such as metals (60%), blends of many polymers (30%) and halogenated compounds, radioactive elements and other pollutants (10%), respectively. The sustainable, efficient, and economic management of e-waste is thus, a challenging task today and in the coming decades. Conventional techniques such as the use of chemicals, incineration and informal ways of e-waste dismantling trigger serious health risks and contamination to the human population and environment, respectively due to the liberation of toxic and hazardous substances from the waste. In this context, bio-candidates especially microorganisms could be sharp-edged biological recycling tools to manage e-waste sustainably. As microbes are omnipresent and diverse in their physiology and functional aspects, they offer a wide range of bioremediation.




Waste Management: Concepts, Methodologies, Tools, and Applications


Book Description

As the world’s population continues to grow and economic conditions continue to improve, more solid and liquid waste is being generated by society. Improper disposal methods can not only lead to harmful environmental impacts but can also negatively affect human health. To prevent further harm to the world’s ecosystems, there is a dire need for sustainable waste management practices that will safeguard the environment for future generations. Waste Management: Concepts, Methodologies, Tools, and Applications is a vital reference source that examines the management of different types of wastes and provides relevant theoretical frameworks about new waste management technologies for the control of air, water, and soil pollution. Highlighting a range of topics such as contaminant removal, landfill treatment, and recycling, this multi-volume book is ideally designed for environmental engineers, waste authorities, solid waste management companies, landfill operators, legislators, environmentalists, policymakers, government officials, academicians, researchers, and students.




Wastewater Treatment Residues as Resources for Biorefinery Products and Biofuels


Book Description

Wastewater Treatment Residues as Resources for Biorefinery Products and Energy reviews wastewater treatment processes and the use of residues. The viability of end use processes for residues, such as incineration, cement additives, agricultural fertilizers, and methane production are reviewed and analyzed, as are new processes for the use of residues within a fuels production system, such as pyrolysis, hydrothermal liquefaction and syngas. Specialized chapters discuss fractionation of biomass, the production of compounds from volatile fatty acids that conceptually proceed from the anaerobic acidogenesis of residues, and a final analysis of the overall productivity and viability that can be expected from these production schemes. - Discusses processes for the production of high value-added products and energy development from sludge - Provides value-added technologies for resource utilization in wastewater systems - Outlines sustainability assessments and comparisons of technologies and processes




Proceedings of the 48th Industrial Waste Conference Purdue University, May 1993


Book Description

Known and used throughout the world, the Purdue Industrial Waste Conference Proceedings books are the most highly regarded in the waste treatment field. New research, case histories, and operating data cover every conceivable facet of today's big problems in environmental control, treatment, regulation, and compliance. This volume representing the proceedings from the 48th conference provides unparalled information and data for your current waste problems.




Proceedings of the 44th Industrial Waste Conference May 1989, Purdue University


Book Description

New research-case histories and operating data-on every conceivable facet of today's big problem are detailed in the latest Purdue Book-with unparalleled appropriate, usable information and data for your current industrial waste problems from the May 1989 Conference.




Bioelectrochemical Systems


Book Description

In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.




E-Waste in Transition


Book Description

E-waste management is a serious challenge across developed, transition, and developing countries because of the consumer society and the globalization process. E-waste is a fast-growing waste stream which needs more attention of international organizations, governments, and local authorities in order to improve the current waste management practices. The book reveals the pollution side of this waste stream with critical implications on the environment and public health, and also it points out the resource side which must be further developed under the circular economy framework with respect to safety regulations. In this context, complicated patterns at the global scale emerge under legal and illegal e-waste trades. The linkages between developed and developing countries and key issues of e-waste management sector are further examined in the book.