Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates


Book Description

Sediment contamination is a widespread environmental problem that can potentially pose a threat to a variety of aquatic ecosystems. The sediment test methods in this manual will be used by The United States Environmental Protection Agency (USEPA) to make decisions under a range of statutory authorities concerning such issues as: dredged material disposal, registration of pesticides and toxic substances, superfound site assessment, and assessment and cleanup of hazardous waste treatment, storage, and disposal facilities. The use of uniform sediment testing procedures by USEPA programs is expected to increase data accuracy and precision, facilitate test replication, increase the comparative value of test results, and ultimately, increase the efficiency of regulatory processes requiring sediment tests.













Chemometrics and Cheminformatics in Aquatic Toxicology


Book Description

CHEMOMETRICS AND CHEMINFORMATICS IN AQUATIC TOXICOLOGY Explore chemometric and cheminformatic techniques and tools in aquatic toxicology Chemometrics and Cheminformatics in Aquatic Toxicology delivers an exploration of the existing and emerging problems of contamination of the aquatic environment through various metal and organic pollutants, including industrial chemicals, pharmaceuticals, cosmetics, biocides, nanomaterials, pesticides, surfactants, dyes, and more. The book discusses different chemometric and cheminformatic tools for non-experts and their application to the analysis and modeling of toxicity data of chemicals to various aquatic organisms. You’ll learn about a variety of aquatic toxicity databases and chemometric software tools and webservers as well as practical examples of model development, including illustrations. You’ll also find case studies and literature reports to round out your understanding of the subject. Finally, you’ll learn about tools and protocols including machine learning, data mining, and QSAR and ligand-based chemical design methods. Readers will also benefit from the inclusion of: A thorough introduction to chemometric and cheminformatic tools and techniques, including machine learning and data mining An exploration of aquatic toxicity databases, chemometric software tools, and webservers Practical examples and case studies to highlight and illustrate the concepts contained within the book A concise treatment of chemometric and cheminformatic tools and their application to the analysis and modeling of toxicity data Perfect for researchers and students in chemistry and the environmental and pharmaceutical sciences, Chemometrics and Cheminformatics in Aquatic Toxicology will also earn a place in the libraries of professionals in the chemical industry and regulators whose work involves chemometrics.