Forest Hydrology


Book Description

Due to its height, density, and thickness of crown canopy; fluffy forest floor; large root system; and horizontal distribution; forest is the most distinguished type of vegetation on the earth. In the U.S., forests occupy about 30 percent of the total territory. Yet this 30 percent of land area produces about 60 percent of total surface runoff, the major water resource area of the country. Any human activity in forested areas will inevitably disturb forest floors and destroy forest canopies, consequently affecting the quantity, quality, and timing of water resources. Thoroughly updated and expanded, Forest Hydrology: An Introduction to Water and Forests, Third Edition discusses the concepts, principles, and processes of forest and forest activity impacts on the occurrence, distribution, and circulation of water and the aquatic environment. Brings water resources and forest-water relations into a single, comprehensive textbook Focuses on the concepts, processes, and general principles in forest hydrology Covers functions, properties, and science of water; water distribution; forests and precipitation, vaporization, stream flow, and stream sediment Discusses watershed management planning and practical applications of forest hydrology in resource management In a single textbook, Forest Hydrology: An Introduction to Water and Forests, Third Edition comprehensively covers water and water resources issues, forest characteristics relevant to the environment, forest impacts in the hydrological cycle, watershed research, watershed management planning, and hydrologic measurements. With the addition of new chapters, new issues, and appendices, this new edition is a valuable resource for upper-level undergraduates in forest hydrology courses as well as professionals involved in water resources management and decision-making in forested watersheds.




Determination of Channel-morphology Characteristics, Bankfull Discharge, and Various Design-peak Discharges in Western Montana


Book Description

Stream-restoration projects using natural stream designs typically are based on channel configurations that can accommodate a wide range of streamflow and sediment-transport conditions without excessive erosion or deposition. Bankfull discharge is an index of streamflow considered to be closely related to channel shape, size, and slope (channel morphology). Because of the need for more information about the relation between channel morphology and bankfull discharge, the U.S. Geological Survey (USGS), in cooperation with the Montana Department of Transportation and the U.S. Department of Agriculture-Lolo National Forest, conducted a study to collect channel-morphology and bankfull-discharge data at gaged sites and use these data to improve current (2004) methods of estimation of bankfull discharge and various design-peak discharges at ungaged sites. This report presents channel-morphology haracteristics, bankfull discharge, and various design-peak discharges for 41 sites in western Montana.







Recent Books